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Abstract
We show that a general ordinary Gushel–Mukai (GM)
threefold 𝑋 can be reconstructed from its Kuznetsov
component 𝑢(𝑋) together with an extra piece of data
coming from tautological subbundle of the Grassman-
nian Gr(2, 5). We also prove that 𝑢(𝑋) determines the
birational isomorphism class of 𝑋, while 𝑢(𝑋′) deter-
mines the isomorphism class of a special GM threefold
𝑋′ if it is general. As an application, we prove a conjec-
ture of Kuznetsov–Perry in dimension 3 under a mild
assumption. Finally, we use 𝑢(𝑋) to restate a conjec-
ture of Debarre–Iliev–Manivel regarding fibers of the
period map for ordinary GM threefolds.
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1 INTRODUCTION

In recent times, derived categories have played an important role in algebraic geometry; in many
cases,much of the geometric information of a variety/scheme𝑋 is encoded by its bounded derived
category of coherent sheaves D𝑏(𝑋). In this setting, one of the most fundamental questions that
can be asked is whether D𝑏(𝑋) recovers 𝑋 up to isomorphism, in other words, whether a derived
Torelli theorem holds for 𝑋. For varieties with ample or antiample canonical bundle (which
include Fano varieties and varieties of general type), this question was answered affirmatively
by Bondal–Orlov in [10].

1.1 Kuznetsov components and categorical Torelli theorems

Therefore, for the class of varieties above, it is natural to ask whether they are also determined
up to isomorphism by less information than the whole derived category D𝑏(𝑋). A natural candi-
date for this is a subcategory 𝑢(𝑋) of D𝑏(𝑋) called the Kuznetsov component. This subcategory
has been studied extensively by Kuznetsov and others (e.g., [28, 29, 33]) for many Fano varieties,
including Gushel–Mukai (GM) varieties.
The question of whether𝑢(𝑋) determines 𝑋 up to isomorphism has been studied for certain

cases in the setting of Fano threefolds. In [8], the authors show that the Kuznetsov component
completely determines cubic threefolds up to isomorphism, in other words, a categorical Torelli
theorem holds for cubic threefolds𝑌. The same result was also verified in [51]. On the other hand,
for many Fano varieties, the Kuznetsov component 𝑢(𝑋) does not determine the isomorphism
class, but only the birational isomorphism class of 𝑋. This is known as a birational categorical
Torelli theorem. For instance, Kuznetsov components determine the birational isomorphism class
of every index 1 prime Fano threefolds of even genus g ⩾ 8. For GM threefolds — the focus of our
paper — by [34], it is known that there are birational GM threefolds with equivalent Kuznetsov
components. So, there are two natural questions to ask in this setting.

Question 1.1.

(1) Does𝑢(𝑋) determine the birational equivalence class of 𝑋?
(2) What extra data along with 𝑢(𝑋) do we need to identify a particular GM threefold 𝑋 from

its birational equivalence class?

1.2 Main results

1.2.1 (Refined) categorical Torelli for Gushel–Mukai threefolds

In the present paper, we deal with the case of index 1 prime Fano threefolds of degree 10 and
genus 6, also known as Gushel–Mukai threefolds (GM threefolds for short), which are split into
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CATEGORICAL TORELLI FOR GM THREEFOLDS 3 of 52

two types: ordinary GM threefolds that arise as a quadric section of a linear section of the Grass-
mannian Gr(2, 5), and special GM threefolds that arise as double covers of a codimension three
linear section ofGr(2, 5), branched over a degree 10 K3 surface. By [33], we have a semiorthogonal
decomposition

D𝑏(𝑋) = ⟨𝑢(𝑋),  ,𝑋⟩,
where  is the pull-back of the tautological subbundle on Gr(2, 5) along the natural map 𝑋 →

Gr(2, 5).
Our first main theorem is concerned with ordinary GM threefolds and answers Question 1.1

(2).

Theorem 1.2 (Theorem 9.2). Let 𝑋 be a general ordinary GM threefold and 𝜋∶ D𝑏(𝑋) → 𝑢(𝑋)

be the right adjoint to the inclusion 𝑢(𝑋) ⊂ D𝑏(𝑋). Then the data of 𝑢(𝑋) along with the object
𝜋() are enough to determine 𝑋 up to isomorphism.

On the other hand, for special GM threefolds that are general (“general special” for short), we
show that a categorical Torelli theorem holds.

Theorem 1.3 (Theorem 9.9). Let 𝑋 and 𝑋′ be general special GM threefolds, and assume that there
is an equivalence of categories𝑢(𝑋) ≃ 𝑢(𝑋′). Then 𝑋 and 𝑋′ are isomorphic.

1.2.2 Birational categorical Torelli for Gushel–Mukai threefolds

Next, returning to the setting of ordinary GM threefolds, we show that a birational categorical
Torelli theorem holds for general ordinary GM threefolds, which answers Question 1.1 (1).

Theorem 1.4 (Theorem 9.3). Let 𝑋 and 𝑋′ be general ordinary GM threefolds, and suppose that
there is an equivalence of categories𝑢(𝑋) ≃ 𝑢(𝑋′). Then 𝑋 is birationally equivalent to 𝑋′.

In [34], the authors studied GM varieties of arbitrary dimension and proved the Duality Con-
jecture [33, Conjecture 3.7] for them, that is, they showed that the period partner or period dual
of a GM variety 𝑋 shares the same Kuznetsov component𝑢(𝑋) as 𝑋. Combining earlier results
[14, Theorem 4.20] on the birational equivalence of these varieties, this gives strong evidence for
the following conjecture.

Conjecture 1.5 [34, Conjecture 1.7]. If 𝑋 and 𝑋′ are GM varieties of the same dimension such that
there is an equivalence𝑢(𝑋) ≃ 𝑢(𝑋′), then 𝑋 and 𝑋′ are birationally equivalent.

Thus, our result Theorem 1.4 actually proves Conjecture 1.5 under the assumption that 𝑋 and
𝑋′ are both of dimension 3, ordinary and general.
Moreover, by a careful study of Bridgeland moduli spaces of stable objects in the Kuznetsov

components𝑋 for not only smooth ordinary GM threefolds but also special GM threefolds𝑋, we
can prove that the Kuznetsov component of a general ordinary GM threefold cannot be equivalent
to the one of a general special GM threefold. Therefore, combined with Theorems 1.4 and 1.3, we
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4 of 52 JACOVSKIS et al.

have the following improved version of Theorem 1.4, which allows threefolds to be either ordinary
or special.

Theorem 1.6 (Theorem 9.7 and Corollary 9.8). If 𝑋 and 𝑋′ are general ordinary or general
special GM threefolds such that there is an equivalence 𝑢(𝑋) ≃ 𝑢(𝑋′), then 𝑋 and 𝑋′ are
birationally equivalent.

1.2.3 The Debarre–Iliev–Manivel conjecture

In [13], the authors conjecture that the general fiber of the classical period map from the mod-
uli space of ordinary GM threefolds to the moduli space of 10-dimensional principally polarized
abelian varieties is birational to the disjoint union of the minimal model 𝑚(𝑋) of the Fano sur-
face of conics and a moduli space of stable sheaves 𝑀𝑋

𝐺
(2, 1, 5), both quotiented by involutions,

which we call theDebarre–Iliev–Manivel conjecture (cf. Conjecture 10.1). Within the moduli space
of smooth ordinary GM threefolds, we define the fiber of the “categorical period map” through
[𝑋] as the isomorphism classes of all ordinary GM threefolds 𝑋′ whose Kuznetsov components
satisfy𝑢(𝑋′) ≃ 𝑢(𝑋). Then the following categorical analog of theDebarre–Iliev–Manivel con-
jecture follows from Theorem 1.4 and results on Bridgeland moduli spaces with respect to the two
(−1)-classes in the numerical Grothendieck group of𝑋 .

Theorem 1.7 (Theorem 10.3). A general fiber of the “categorical period map” through an ordi-
nary GM threefold 𝑋 is the union of 𝑚(𝑋)∕𝜄 and 𝑀𝑋

𝐺
(2, 1, 5)∕𝜄′ where 𝜄, 𝜄′ are geometrically

meaningful involutions.

As an application, the Debarre–Iliev–Manivel Conjecture 10.1 can be restated in an equivalent
form as follows.

Conjecture 1.8. Let 𝑋 be a general ordinary GM threefold. The intermediate Jacobian 𝐽(𝑋)

determines the Kuznetsov component𝑢(𝑋).

Remark 1.9. In [13], the authors actually conjecture that a general fiber of the period map is bira-
tional to the disjoint union of two surfaces, parametrizing conic transforms and conic transforms
of a line transform of 𝑋, which is birational to the disjoint union of 𝑚(𝑋) and 𝑀𝑋

𝐺
(2, 1, 5), both

quotiented by involutions. In Corollary 9.5, we show that this birational equivalence is indeed an
isomorphism.

1.2.4 Uniqueness of Serre-invariant stability conditions

One of the key steps when we identify Bridgeland moduli spaces via an equivalence of Kuznetsov
components in the proofs of Theorems 1.2 and 1.4. A stability condition 𝜎 on the Kuznetsov
component 𝑢(𝑋) of a prime Fano threefold 𝑋 is Serre-invariant if 𝑆𝑢(𝑋) ⋅ 𝜎 = 𝜎 ⋅ g for some
g ∈ G̃L

+
(2, ℝ) (see Section 4.4). Serre-invariance is one of the fundamental tools in studying

relationship of classical Gieseker moduli spaces and Bridgeland moduli spaces for Kuznetsov
components (cf. [1, 17, 40, 51, 54]). A natural question is whether any two Serre-invariant stability
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CATEGORICAL TORELLI FOR GM THREEFOLDS 5 of 52

conditions are in the same G̃L
+
(2, ℝ)-orbit. In the present paper, we answer this question

affirmatively.

Theorem 1.10 (Theorem A.10). Let 𝑋 be a prime Fano threefold of index 1 of genus g ⩾ 6, or a del
Pezzo threefold of degree 𝑑 ⩾ 2. Then all Serre-invariant stability conditions on 𝑢(𝑋) are in the
same G̃L

+
(2, ℝ)-orbit.

1.3 Methods

For convenience, we work with the alternative Kuznetsov component 𝑋 , defined by the
semiorthogonal decomposition D𝑏(𝑋) = ⟨𝑋,𝑋, ∨⟩ and there is an equivalence Ξ∶ 𝑢(𝑋) ≃

𝑋 . We prove the above Theorems 1.2, 1.4, 1.6, and 1.7 by considering themoduli spaces of Bridge-
land stable objects in the alternative Kuznetsov component𝑋 with respect to (−1)-classes in the
numerical Grothendieck group of 𝑋 , that is, a vector 𝑣 with 𝜒(𝑣, 𝑣) = −1 where 𝜒 is the Euler
form.Up to sign, there are two (−1)-classes in the numerical Grothendieck group of𝑋 , call them
−𝑥 and 𝑦 − 2𝑥.
First, we show that the moduli space with the class −𝑥 is isomorphic to the minimal model

𝑚(𝑋) of the Fano surface of conics (Theorem 7.12). Indeed, we first show that the unique excep-
tional curve contracted in (𝑋) is the rational curve of conics whose ideal sheaf 𝐼𝐶 is not in 𝑋

and that the image is the smooth point represented by 𝜋() (Proposition 7.1), so 𝑚(𝑋) forms
an irreducible component of the moduli space𝜎(𝑋, −𝑥) of stable objects in𝑋 with respect
to −𝑥.
Then, we show that this component actually occupies the whole moduli space (Proposi-

tion 7.11), which is the most difficult and technical part of the article, and we only briefly sketch
the argument here. We start with a stable object 𝐹 ∈ 𝑋 of the class −𝑥. It suffices to show that
𝐹 is isomorphic to the projection of ideal sheaf 𝐼𝐶 of a conic 𝐶 ⊂ 𝑋. First, we assume that 𝐹 is
semistable in the double tilted heart Coh0

𝛼,𝛽
(𝑋) (cf. Section 4.4). Then, by a wall-crossing argu-

ment, we prove that 𝐹[−1] is a slope-semistable sheaf of rank one. Since its class is [𝐹] = −[𝐼𝐶],
we get 𝐹 ≅ 𝐼𝐶[1]. Next, we assume that 𝐹 is not semistable in the double-tilted heart Coh0

𝛼,𝛽
(𝑋).

Our main tools are inequalities in [36] and Theorem 4.7, which allow us to bound the rank and
first twoChern characters ch1, ch2 of the destabilizing objects and their cohomology objects. Since
𝐹 ∈ 𝑋 , by using the Euler characteristics 𝜒(𝑋, −) and 𝜒(∨, −), we can obtain a bound on
ch3. Then, we deduce that the Harder–Narasimhan factors of 𝐹 are the expected ones (Proposi-
tion 7.10). As a result,𝜎(𝑋, −𝑥) ≅ 𝑚(𝑋). Similarly, we identify the moduli space𝑀𝑋

𝐺
(2, 1, 5)

of Gieseker semistable sheaves of rank 2, 𝑐1 = 1, 𝑐2 = 5, and 𝑐3 = 0 on 𝑋 with the Bridgeland
moduli space𝜎(𝑋, 𝑦 − 2𝑥) in Theorem 8.9.
As we have seen, (𝑋) is exactly the blow-up of 𝑚(𝑋) ≅ 𝜎(𝑋, −𝑥) at the point Ξ(𝜋());

hence, the data (𝑢(𝑋), 𝜋()) determine (𝑋). A classical result of Logachev [41] states that 𝑋
can be determined up to isomorphism from (𝑋). Thus, Theorem 1.2 is proved.
We prove Theorem 1.3 via another method. By considering the equivariant Kuznetsov compo-

nents𝑢(𝑋)𝜇2 , first discussed in [32], and exploiting the fact that𝑋 is the double cover of a degree
5 index 2 prime Fano threefold 𝑌, branched over a quadric hypersurface  ⊂ 𝑌. In this case, the
equivariant Kuznetsov component is equivalent to D𝑏() where  is a K3 surface. Therefore, a
number of results concerning the Fourier–Mukai partners of K3 surfaces can be used to deduce
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6 of 52 JACOVSKIS et al.

that𝑢(𝑋)𝜇2 ≃ 𝑢(𝑋′)𝜇2 implies  ≅ ′. Then, the fact that the del Pezzo threefold 𝑌 of degree
5 is rigid can be used to deduce that indeed, 𝑋 ≅ 𝑋′.
To prove Theorem 1.4, we invoke a few more results from [13]. More precisely, an equivalence

of categoriesΦ∶ 𝑋 ≃ 𝑋′ identifies the moduli space𝜎(𝑋, −𝑥)with either𝜎(𝑋, −𝑥) or
𝜎(𝑋′ , 𝑦 − 2𝑥). The former case gives an isomorphism of minimal surfaces 𝑚(𝑋) ≅ 𝑚(𝑋′).
Blowing𝑚(𝑋)up at the smooth point associated to𝜋() gives(𝑋), and blowing up𝑚(𝑋′) at the
image of𝜋()underΦ gives(𝑋′

𝐶
), where𝑋′

𝐶
is certain birational transformation of𝑋′, associated

with a conic 𝐶 ⊂ 𝑋′. Then by Logachev’s reconstruction theorem for (𝑋), 𝑋 is isomorphic to 𝑋′
𝐶

that is birational to𝑋′. For the latter case, we start with the isomorphism 𝑚(𝑋) ≅ 𝑀𝑋′

𝐺
(2, 1, 5). In

fact,𝑀𝑋′

𝐺
(2, 1, 5) is birational to (𝑋′

𝐿
), where 𝑋′

𝐿
is another birational transformation of 𝑋′, asso-

ciated with a line 𝐿 ⊂ 𝑋′. Since (𝑋′
𝐿
) is a surface of general type, we get 𝑚(𝑋) ≅ 𝑚(𝑋′

𝐿
). Then,

by the same argument as in the previous case, 𝑋 is isomorphic to some birational transformation
of 𝑋′.
Finally, the proof of Theorem 1.6 is similar to that of Theorem 1.4. First, we identify the Bridge-

landmoduli spaces𝜎(𝑋′ , −𝑥) and𝜎(𝑋′ , 𝑦 − 2𝑥) on a special GM threefold𝑋′ with 𝑚(𝑋′)

and 𝑀𝑋′

𝐺
(2, 1, 5), respectively (Theorem 7.12 and Theorem 8.9), where 𝑚(𝑋′) is the contraction

of the Fano surface (𝑋′) of conics on 𝑋′ along one of the components to a singular point.
Then, if 𝑋 is ordinary, the equivalence Φ∶ 𝑋 ≃ 𝑋′ would identify those moduli spaces on a
general ordinary GM threefold 𝑋 with those on a special GM threefold 𝑋′; we show that this
is impossible by analyzing their singularities. Then, Theorem 1.6 reduces to Theorem 1.4 and
Theorem 1.3.

1.4 Related work

1.4.1 Categorical Torelli theorems

There is a very nice survey article [50] on recent results and remaining open questions on this
topic. In [8] and [51], the authors prove categorical Torelli theorems for cubic threefolds. In
[1] and [9], the authors prove categorical Torelli theorems for general quartic double solids.
In [38] and [39], the authors prove a refined categorical Torelli theorem for Enriques surfaces.
In [26], the authors generalize Theorem 9.2 to all prime Fano threefolds of genus g ⩾ 6. In
[18], the authors prove a birational categorical Torelli theorem for general non-Hodge-special
Gushel–Mukai fourfolds.

1.4.2 Identifying classical moduli spaces as Bridgeland moduli spaces for
Kuznetsov components

In the present article, we realize the Fano surface of conics and a certain Gieseker moduli space of
semistable sheaves as Bridgelandmoduli spaces of stable objects in Kuznetsov components of GM
threefolds. In [51], the authors realize the Fano surface of lines Σ(𝑌𝑑) (for 𝑑 ⩾ 2) as a Bridgeland
moduli space of stable objects in the Kuznetsov component 𝑢(𝑌𝑑). In [40], the authors realize
the moduli space of rank two instanton sheaves on a del Pezzo threefold 𝑌𝑑 (for 𝑑 ⩾ 3) and the
compactification of the moduli space of ACM sheaves on 𝑋4𝑑+2 (for 𝑑 ⩾ 3) as Bridgeland moduli
spaces of stable objects in 𝑢(𝑌𝑑) and 𝑢(𝑋4𝑑+2), respectively. In [17], the authors realize the
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CATEGORICAL TORELLI FOR GM THREEFOLDS 7 of 52

moduli space of Ulrich bundles of arbitrary rank on a cubic threefold 𝑌3 as an open locus of a
Bridgeland moduli space of stable objects in𝑢(𝑌3).

1.4.3 Serre-invariant stability conditions

In [48] and [51], the authors prove that stability conditions on Kuznetsov components of every
del Pezzo threefold 𝑌𝑑 of degree 𝑑 ⩾ 1 and every index 1 prime Fano threefold of genus g ⩾ 6 are
Serre-invariant. In [17], the authors prove the uniqueness of Serre-invariant stability conditions
for a general triangulated category satisfying a list of very natural assumptions, which include
Kuznetsov components of a series of prime Fano threefolds.

1.5 Notation and conventions

∙ We work over the field 𝑘 = ℂ. All triangulated categories and abelian categories are assumed
to be 𝑘-linear.

∙ We use hom and ext𝑖 to represent the dimension of the vector spaces Hom and Ext𝑖 .
∙ The numerical 𝐾 group of a triangulated category  is denoted by  (), which is
the Grothendieck group 𝐾0() modulo the kernel of the Euler form 𝜒(𝐸, 𝐹) =

∑
𝑖(−1)𝑖

ext𝑖(𝐸, 𝐹).
∙ Wedenote the bounded derived category of a smooth projective variety𝑋 byD𝑏(𝑋). The derived
dual functor is denoted by 𝔻 ∶= R𝑜𝑚𝑋(−,𝑋).

∙ Wedenote the phase and slopewith respect to aweak stability condition 𝜎 by 𝜙𝜎 and 𝜇𝜎, respec-
tively. The maximal and minimal slopes (phases) of the Harder–Narasimhan factors of a given
object 𝐹 will be denoted by 𝜇+

𝜎 (𝐹) (𝜙+
𝜎 (𝐹)) and 𝜇−

𝜎 (𝐹) (𝜙−
𝜎 (𝐹)), respectively.

∙ 𝑖

means the 𝑖th cohomology with respect to the heart. When the subscript is dropped,

we take the heart to be Coh(𝑋).
∙ The symbol ≃ denotes an equivalence of categories and a birational equivalence of varieties.
The symbol ≅ denotes an isomorphism of varieties.

∙ Let 𝑋 be a GM threefold. Then a conic means a closed subscheme 𝐶 ⊂ 𝑋 with Hilbert poly-
nomial 𝑝𝐶(𝑡) = 1 + 2𝑡, and a line means a closed subscheme 𝐿 ⊂ 𝑋 with Hilbert polynomial
𝑝𝐿(𝑡) = 1 + 𝑡.

1.6 Organization of the paper

In Section 2, we collect basic facts about semiorthogonal decompositions. In Section 3, we
introduce Gushel–Mukai threefolds and their Kuznetsov components. In Section 4, we introduce
the definition of weak stability conditions on D𝑏(𝑋), and the induced stability conditions on the
alternative Kuznetsov components 𝑋 of GM threefolds. In Section 5, we introduce a distin-
guished object 𝜋() ∈ 𝑢(𝑋) and its alternative Kuznetsov component analog Ξ(𝜋()) ∈ 𝑋

and prove its stability. In Section 6, we discuss the geometry of the Fano surface of conics of a
GM threefold. In Section 7, we construct the Bridgeland moduli space of 𝜎-stable objects with
class −𝑥 in 𝑋 . In Section 8, we construct the Bridgeland moduli space of 𝜎-stable objects with
respect to the other (−1)-class 𝑦 − 2𝑥 in 𝑋 . In Section 9, we prove several birational/refined
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8 of 52 JACOVSKIS et al.

categorical Torelli theorems (Theorems 1.2, 1.3, and 1.4) and Conjecture 1.5 in dimension 3 with
mild assumptions. In Section 10, we describe the general fiber of the “categorical period map”
for ordinary GM threefolds 1.7, and restate the Debarre–Iliev–Manivel conjecture in terms of
Conjecture 10.6. Finally, we study Serre-invariant stability conditions on Kuznetsov components
and show that they are contained in one G̃L

+
(2, ℝ) orbit in the Appendix.

2 SEMIORTHOGONAL DECOMPOSITIONS

In this section, we collect some useful facts about semiorthogonal decompositions. Background
on triangulated categories and derived categories of coherent sheaves can be found in [21], for
example. From now on, let D𝑏(𝑋) denote the bounded derived category of coherent sheaves on a
smooth projective variety 𝑋, and for 𝐸, 𝐹 ∈ D𝑏(𝑋), define

RHom∙(𝐸, 𝐹) =
⨁
𝑖∈ℤ

Hom(𝐸, 𝐹[𝑖])[−𝑖].

2.1 Exceptional collections and semiorthogonal decompositions

Definition 2.1. Let be a triangulated category and 𝐸 ∈ . We say that 𝐸 is an exceptional object
if RHom∙(𝐸, 𝐸) = 𝑘. Now let (𝐸1, … , 𝐸𝑚) be a collection of exceptional objects in . We say that
it is an exceptional collection if RHom∙(𝐸𝑖, 𝐸𝑗) = 0 for 𝑖 > 𝑗.

Definition 2.2. Let  be a triangulated category and  be a triangulated subcategory of . We
define the right orthogonal complement of  in as the full triangulated subcategory

⊥ = {𝑋 ∈  ∣ Hom(𝑌,𝑋) = 0 for all 𝑌 ∈ }.

The left orthogonal complement is defined similarly, as

⊥ = {𝑋 ∈  ∣ Hom(𝑋,𝑌) = 0 for all 𝑌 ∈ }.

Definition 2.3. Let  be a triangulated category. We say that a triangulated subcategory  ⊂ 

is admissible if the inclusion functor 𝑖 ∶  ↪  has left adjoint 𝑖∗ and right adjoint 𝑖!.

Definition 2.4. Let be a triangulated category, and (1, … ,𝑚) be a collection of full admissible
subcategories of. We say that = ⟨1, … ,𝑚⟩ is a semiorthogonal decomposition of if 𝑗 ⊂ ⊥

𝑖
for all 𝑖 > 𝑗, and the subcategories (1, … ,𝑚) generate , that is, the category resulting from
taking all shifts and cones of objects in the categories (1, … ,𝑚) is equivalent to.

Let 𝑆 be the Serre functor of, thenwehave the following standard result, see, for example, [4,
Section 3]:

Proposition 2.5 [4, Section 3]. If  = ⟨1,2⟩ is a semiorthogonal decomposition, then  =⟨𝑆(2),1⟩ = ⟨2, 𝑆
−1


(1)⟩ are also semiorthogonal decompositions.

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CATEGORICAL TORELLI FOR GM THREEFOLDS 9 of 52

2.2 Mutations

Let  ⊂  be an admissible triangulated subcategory. Then the left mutation functor 𝐋 through
 is defined as the functor lying in the canonical functorial exact triangle

𝑖𝑖! → id → 𝐋 ,

and the right mutation functor 𝐑 through  is defined similarly, by the triangle

𝐑 → id → 𝑖𝑖∗.

When 𝐸 ∈ D𝑏(𝑋) is an exceptional object, and 𝐹 ∈ D𝑏(𝑋) is any object, the left mutation 𝐋𝐸𝐹 fits
into the triangle

𝐸 ⊗ RHom∙(𝐸, 𝐹) → 𝐹 → 𝐋𝐸𝐹,

and the right mutation 𝐑𝐸𝐹 fits into the triangle

𝐑𝐸𝐹 → 𝐹 → 𝐸 ⊗ RHom∙(𝐹, 𝐸)∨.

Proposition 2.6 [31, Lemma 2.6]. Let = ⟨,⟩ be a semiorthogonal decomposition. Then
𝑆 = 𝐑◦𝑆 and 𝑆−1


= 𝐋◦𝑆

−1


.

Lemma 2.7 [30, Lemma 2.7]. Let  = ⟨1,2, … ,𝑛⟩ be a semiorthogonal decomposition with all
components being admissible. Then, for each 1 ⩽ 𝑘 ⩽ 𝑛 − 1, there is a semiorthogonal decomposi-
tion

 = ⟨1, … ,𝑘−1, 𝐋𝑘
𝑘+1,𝑘,𝑘+2 … ,𝑛⟩

and for each 2 ⩽ 𝑘 ⩽ 𝑛, there is a semiorthogonal decomposition

 = ⟨1, … ,𝑘−2,𝑘, 𝐋𝑘
𝑘−1,𝑘+1 … ,𝑛⟩.

3 GUSHEL–MUKAI THREEFOLDS AND THEIR DERIVED
CATEGORIES

Let 𝑋 be a prime Fano threefold of index 1 and degree 𝐻3 = 10, where 𝐻 is the ample generator
of CaCl(𝑋). Then, 𝑋 is either a quadric section of a linear section of codimension 2 of the Grass-
mannian Gr(2, 5), in which case it is called an ordinary Gushel–Mukai (GM) threefold, or 𝑋 is
a double cover of a degree 5 and index 2 Fano threefold 𝑌 ramified in a quadric hypersurface,
in which case it is called a special GM threefold. In the latter case, it has a natural involution
𝜏∶ 𝑋 → 𝑋 induced by the double cover 𝜋∶ 𝑋 → 𝑌. By [5, 43], there exists a stable vector bun-
dle  of rank 2 with 𝑐1() = −𝐻, 𝑐2() = 4𝐿, and 𝑐3() = 0, where 𝐿 is the class of a line on
𝑋. In addition,  is exceptional and 𝐻∙(𝑋, ) = 0. In fact,  is the pullback of the tautological
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10 of 52 JACOVSKIS et al.

bundle on the Grassmannian Gr(2, 5). By [13, Proposition 4.1],  is the unique stable sheaf with
𝑐1() = −𝐻, 𝑐2() = 4𝐿 and 𝑐3() = 0.
Furthermore, there is a standard short exact sequence

0 →  → ⊕5
𝑋

→  → 0, (1)

where  is the pull-back of the tautological quotient bundle on Gr(2, 5) along the natural map
𝑋 → Gr(2, 5). Since rk() = 2, we have (𝐻) ≅ ∨.

Definition 3.1. Let 𝑋 be a GM threefold.

∙ The Kuznetsov component of 𝑋 is defined as 𝑢(𝑋) ∶= ⟨ ,𝑋⟩⊥. In particular, it fits into the
semiorthogonal decomposition D𝑏(𝑋) = ⟨𝑢(𝑋),  ,𝑋⟩.

∙ The alternative Kuznetsov component of 𝑋 is defined as 𝑋 ∶= ⟨𝑋, ∨⟩⊥. In particular, it fits
into the semiorthogonal decomposition D𝑏(𝑋) = ⟨𝑋,𝑋, ∨⟩.

Remark 3.2. By [33, Proposition 2.6], there is a natural involutive autoequivalence functor
𝜏 ∶= 𝑆𝑋

[−2] of 𝑋 . When 𝑋 is special, it is induced by the natural involution 𝜏 on 𝑋 as
𝜏 = 𝜏∗|𝑋

.

Definition 3.3. The left adjoint to the inclusion 𝑋 ↪ D𝑏(𝑋) is given by pr ∶=

𝐋𝑋
𝐋∨ ∶ D𝑏(𝑋) → 𝑋 . We call this the projection functor.

The analogous natural projection functor can be defined for𝑢(𝑋), and we denote it by pr′ ∶=

𝐋𝐋𝑋
.

3.1 Kuznetsov components

Let𝐾0() denote theGrothendieck group of a triangulated category. We have the bilinear Euler
form

𝜒(𝐸, 𝐹) =
∑
𝑖∈ℤ

(−1)𝑖 ext𝑖(𝐸, 𝐹)

for [𝐸], [𝐹] ∈ 𝐾0(). By the Hirzebruch–Riemann–Roch formula, it takes the following form
on GM threefolds. We have [29, p. 5] 𝜒(𝑢, 𝑣) = 𝜒0(𝑢

∗ ∩ 𝑣) where 𝑢 ↦ 𝑢∗ is an involution of
⊕3

𝑖=0
𝐻𝑖(𝑋,ℚ) given by multiplication with (−1)𝑖 on𝐻2𝑖(𝑋,ℚ), and 𝜒0 is given by

𝜒0(𝑥 + 𝑦𝐻 + 𝑧𝐿 + 𝑤𝑃) = 𝑥 +
17

6
𝑦 +

1

2
𝑧 + 𝑤,

where 𝐿 is the class of lines and 𝑃 is the class of points. The numerical Grothendieck group of is
 () = 𝐾0()∕ ker 𝜒.

Lemma 3.4 [29, p. 5]. The numerical Grothendieck group (𝑢(𝑋)) of the Kuznetsov component
is a rank 2 integral lattice generated by the basis elements 𝑣 = 1 − 3𝐿 + 1

2
𝑃 and 𝑤 = 𝐻 − 6𝐿 + 1

6
𝑃.
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CATEGORICAL TORELLI FOR GM THREEFOLDS 11 of 52

Using this basis, 𝜒 is given by the matrix (
−2 −3

−3 −5

)
.

3.2 Alternative Kuznetsov components

As in [29, Proposition 3.9], the following lemma follows from a straightforward computation.

Lemma 3.5. The numerical Grothendieck group of𝑋 is a rank 2 integral lattice with basis vectors
𝑥 = 1 − 2𝐿 and 𝑦 = 𝐻 − 4𝐿 − 5

6
𝑃, and the Euler form with respect to the basis is

(
−1 −2

−2 −5

)
.

Remark 3.6. It is straightforward to check that the (−1)-classes of  (𝑋) are 𝑥 = 1 − 2𝐿 and
2𝑥 − 𝑦 = 2 − 𝐻 + 5

6
𝑃, up to sign.

Indeed, the Kuznetsov components from Subsection 3.1 and the alternative Kuznetsov
components from this section are equivalent.

Lemma 3.7. The original and alternative Kuznetsov components are equivalent. More precisely,
there is an equivalence of categoriesΞ∶ 𝑢(𝑋)

∼
n→ 𝑋 given by 𝐸 ↦ 𝐋𝑋

(𝐸 ⊗ 𝑋(𝐻)), with inverse
given by 𝐹 ↦ (𝐑𝑋

𝐹) ⊗ 𝑋(−𝐻).

Proof. Using Lemma 2.7 and noting that  ⊗ 𝑋(𝐻) ≅ ∨, we manipulate the semiorthogonal
decomposition as follows:

D𝑏(𝑋) = ⟨𝑢(𝑋),  ,𝑋⟩
≃ ⟨𝑢(𝑋) ⊗ 𝑋(𝐻), ∨,𝑋(𝐻)⟩
≃ ⟨𝑋,𝑢(𝑋) ⊗ 𝑋(𝐻), ∨⟩
≃ ⟨𝐋𝑋

(𝑢(𝑋) ⊗ 𝑋(𝐻)),𝑋, ∨⟩.
Now comparing with the definition of 𝑋 , we get 𝑋 ≃ 𝐋𝑋

(𝑢(𝑋) ⊗ 𝑋(𝐻)) and the desired
result follows. The reverse direction is similar. □

4 BRIDGELAND STABILITY CONDITIONS

In this section, we recall (weak) Bridgeland stability conditions on D𝑏(𝑋), and the notions of tilt
stability, double-tilt stability, and stability conditions induced on Kuznetsov components from
weak stability conditions on D𝑏(𝑋). We follow [4, § 2].
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12 of 52 JACOVSKIS et al.

4.1 Weak stability conditions

Let  be a triangulated category, and 𝐾0() its Grothendieck group. Fix a surjective morphism
𝑣∶ 𝐾0() → Λ to a finite rank lattice.

Definition 4.1. A stability condition (resp. weak stability condition) on  is a pair 𝜎 = (, 𝑍)

where  is the heart of a bounded t-structure on , and 𝑍∶ Λ → ℂ is a group homomorphism
such that the following conditions hold.

(1) The composition 𝑍◦𝑣∶ 𝐾0() ≅ 𝐾0() → ℂ satisfies: for any 𝐸 ≠ 0 ∈ , we have Im𝑍(𝐸) ⩾

0 and if Im𝑍(𝐸) = 0, thenRe𝑍(𝐸) < 0 (resp.Re𝑍(𝐸) ⩽ 0). Fromnowon,wewrite𝑍(𝐸) rather
than 𝑍(𝑣(𝐸)).

We define a slope function 𝜇𝜎 for 𝜎 using 𝑍. For any 𝐸 ∈ , set

𝜇𝜎(𝐸) ∶=

{
−Re𝑍(𝐸)

Im𝑍(𝐸)
, Im𝑍(𝐸) > 0

+∞, else.

We say that an object 0 ≠ 𝐸 ∈  is 𝜎-(semi)stable if 𝜇𝜎(𝐹) < 𝜇𝜎(𝐸∕𝐹) (respectively, 𝜇𝜎(𝐹) ⩽

𝜇𝜎(𝐸∕𝐹)) for all proper subobjects 𝐹 ⊂ 𝐸.

(2) Any object 𝐸 ∈  has a Harder–Narasimhan filtration in terms of 𝜎-semistability defined
above.

(3) There exists a quadratic form 𝑄 on Λ ⊗ ℝ such that 𝑄|ker 𝑍 is negative definite, and 𝑄(𝐸) ⩾ 0

for all 𝜎-semistable objects 𝐸 ∈ . This is known as the support property.

Definition 4.2. Let 𝜎 = (, 𝑍) be a stability condition on . The phase of a 𝜎-semistable object
𝐸 ∈  is

𝜙(𝐸) ∶=
1

𝜋
arg(𝑍(𝐸)) ∈ (0, 1].

Specially, if 𝑍(𝐸) = 0, then 𝜙(𝐸) = 1. If 𝐹 = 𝐸[𝑛], then we define

𝜙(𝐹) ∶= 𝜙(𝐸) + 𝑛.

A slicing  of consists of full additive subcategories (𝜙) ⊂  for each 𝜙 ∈ ℝ satisfying

(1) for 𝜙 ∈ (0, 1], the subcategory (𝜙) is given by the zero object and all 𝜎-semistable objects
whose phase is 𝜙;

(2) for 𝜙 + 𝑛 with 𝜙 ∈ (0, 1] and 𝑛 ∈ ℤ, we set (𝜙 + 𝑛) ∶= (𝜙)[𝑛].

We will use both notations 𝜎 = (, 𝑍) and 𝜎 = ( , 𝑍) for a stability condition 𝜎 with heart
 = ((0, 1]) where  is the slicing of 𝜎.
We say that 𝜎 is a numerical stability condition on  if the surjective morphism 𝑣∶ 𝐾0() →

Λ factors through the natural surjection 𝐾0() ↠  () (assuming that  () is well
defined).
Next, we recall two natural group actions on the set of stability conditions Stab().
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CATEGORICAL TORELLI FOR GM THREEFOLDS 13 of 52

(1) An element g̃ = (g , 𝐺) in the universal covering G̃L
+
(2, ℝ) of the group GL+(2, ℝ) consists of

an increasing function g ∶ ℝ → ℝ such that g(𝜙 + 1) = g(𝜙) + 1 and a matrix 𝐺 ∈ GL+(2, ℝ)

with det(𝐺) > 0. It acts on the right on the stability manifold by 𝜎 ⋅ g̃ ∶= (𝐺−1◦𝑍,(g(𝜙))) for
any 𝜎 = ( , 𝑍) ∈ Stab() (see [12, Lemma 8.2]).

(2) Let AutΛ() be the group of exact autoequivalences of, whose action Φ∗ on 𝐾0() is com-
patible with 𝑣∶ 𝐾0() → Λ. For Φ ∈ AutΛ() and 𝜎 = ( , 𝑍) ∈ Stab(), we define a left
action of the group of linear exact autoequivalencesAutΛ() byΦ ⋅ 𝜎 = (Φ(), 𝑍◦Φ−1

∗ ), where
Φ∗ is the automorphism of 𝐾0() induced by Φ.

4.2 Tilt-stability

Let (𝑋,𝐻) be a polarized smooth projective variety of dimension 𝑛 and 𝜎𝐻 = (Coh(𝑋), 𝑍𝐻) be the
standard weak stability condition on Coh(𝑋) defined as

𝑍𝐻(𝐸) ∶= −𝐻𝑛−1ch1(𝐸) + 𝔦𝐻𝑛 rk(𝐸).

Its 𝜎𝐻-stability coincides with classical 𝜇𝐻-stability (slope stability). Now for a fixed real number
𝛽, consider the following subcategories† of Coh(𝑋):

 𝛽 = ⟨𝐸 ∈ Coh(𝑋) ∣ 𝐸 is 𝜎𝐻-semistable with 𝜇𝜎𝐻
(𝐸) > 𝛽⟩,

𝛽 = ⟨𝐸 ∈ Coh(𝑋) ∣ 𝐸 is 𝜎𝐻-semistable with 𝜇𝜎𝐻
(𝐸) ⩽ 𝛽⟩.

Then it is a result of [19] that the tilted heart Coh𝛽(𝑋) ∶= ⟨ 𝛽,𝛽[1]⟩ is the heart of a bounded
t-structure on Coh(𝑋).

Proposition 4.3 [6, 7]. Let 𝛼 > 0 and 𝛽 ∈ ℝ. Then, the pair 𝜎𝛼,𝛽 = (Coh𝛽(𝑋), 𝑍𝛼,𝛽) defines a weak
stability condition on D𝑏(𝑋), where

𝑍𝛼,𝛽(𝐸) =
1

2
𝛼2𝐻𝑛ch

𝛽
0
(𝐸) − 𝐻𝑛−2ch

𝛽
2
(𝐸) + 𝔦𝐻𝑛−1ch

𝛽
1
(𝐸).

The quadratic form 𝑄 is given by the discriminant

Δ𝐻(𝐸) = (𝐻𝑛−1ch1(𝐸))2 − 2𝐻𝑛ch0(𝐸)𝐻𝑛−2ch2(𝐸).

We denote the slope function by 𝜇𝛼,𝛽 ∶= 𝜇𝜎𝛼,𝛽
.

The weak stability conditions 𝜎𝛼,𝛽 constructed above are also known as tilt-stability and the
heart Coh𝛽(𝑋) are called the tilted heart.
Now pick a weak stability condition 𝜎𝛼,𝛽 . We define

 0
𝛼,𝛽

= ⟨𝐸 ∈ Coh𝛽(𝑋) ∣ 𝐸 is 𝜎𝛼,𝛽-semistable with 𝜇𝛼,𝛽(𝐸) > 0⟩,
0

𝛼,𝛽
= ⟨𝐸 ∈ Coh𝛽(𝑋) ∣ 𝐸 is 𝜎𝛼,𝛽-semistable with 𝜇𝛼,𝛽(𝐸) ⩽ 0⟩.

† The angle brackets here mean extension closure.
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14 of 52 JACOVSKIS et al.

Moreover, we “rotate” the stability function 𝑍𝛼,𝛽 by setting

𝑍0
𝛼,𝛽

∶=
1

𝔦
𝑍𝛼,𝛽.

Then, we have the following result.

Proposition 4.4 [4, Proposition 2.15]. The pair 𝜎0
𝛼,𝛽

= (Coh0
𝛼,𝛽

(𝑋) = ⟨ 0
𝛼,𝛽

,0
𝛼,𝛽

[1]⟩, 𝑍0
𝛼,𝛽

) defines
a weak stability condition on D𝑏(𝑋). We denote the slope function by 𝜇0

𝛼,𝛽
∶= 𝜇𝜎0

𝛼,𝛽
.

We now state a useful lemma that relates 2-Gieseker-stability (see [2, Definition 4.3]) and tilt-
stability.

Lemma 4.5 [6, Lemma 2.7], [2, Proposition 4.8, 4.9]. Let 𝐸 ∈ D𝑏(𝑋).

(1) Let 𝛽 < 𝜇(𝐸). Then 𝐸 ∈ Coh𝛽(𝑋) is 𝜎𝛼,𝛽-(semi)stable for 𝛼 ≫ 0 if and only if 𝐸 ∈ Coh(𝑋) and
𝐸 is 2-Gieseker-(semi)stable.

(2) If 𝐸 ∈ Coh𝛽(𝑋) is 𝜎𝛼,𝛽-semistable for 𝛽 ⩾ 𝜇(𝐸) and 𝛼 ≫ 0, then −1(𝐸) is a torsion-free 𝜇-
semistable sheaf and 0(𝐸) is supported in dimension not greater than one. If 𝛽 > 𝜇(𝐸) and
𝛼 > 0, then−1(𝐸) is also reflexive.

4.3 Stronger BG inequalities

In this subsection, we state stronger Bogomolov–Gieseker (BG) style inequalities, which hold for
tilt-semistable objects. These will be useful later on for ruling out potential walls for tilt-stability
of objects inD𝑏(𝑋). The first is a stronger version of Proposition 4.3, which was proved by Chunyi
Li in [36, Proposition 3.2] for Fano threefolds of Picard number one.

Lemma4.6 (Stronger BG I). Let𝑋 be an index 1 prime Fano threefoldwith degree 𝑑, and𝐸 ∈ D𝑏(𝑋)

a 𝜎𝛼,𝛽-stable object where 𝛼 > 0. Let 𝑘 ∶= ⌊𝜇(𝐸)⌋. Then we have:
𝐻 ⋅ ch2(𝐸)

𝐻3 ⋅ ch0(𝐸)
⩽ max

{
𝑘𝜇𝐻(𝐸) −

𝑘2

2
,
1

2
𝜇𝐻(𝐸)2 −

3

4𝑑
, (𝑘 + 1)𝜇𝐻(𝐸) −

(𝑘 + 1)2

2

}
.

Moreover, if the equality holds, then 𝐸 has rank one or two.

The second is due to Naoki Koseki and Chunyi Li. It is based on [27, Lemma 4.2, Theorem 4.3].
Chunyi Li also sent us a similar inequality from his upcoming paper [37].

Theorem 4.7 (Stronger BG II). Let𝑋 be an index 1 Fano threefold of degree 𝑑, and 𝐸 ∈ Coh0(𝑋) be
a 𝜎𝛼,0-semistable object for some 𝛼 > 0 with |𝜇𝐻(𝐸)| ∈ [0, 1] and rk(𝐸) ⩾ 2. Then

𝐻 ⋅ ch2(𝐸)

𝐻3 ⋅ ch0(𝐸)
⩽ max

{
1

2
𝜇𝐻(𝐸)2 −

3

4𝑑
, 𝜇𝐻(𝐸)2 −

1

2
|𝜇𝐻(𝐸)|}.

Before we prove Theorem 4.7, we first state an easy lemma.
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CATEGORICAL TORELLI FOR GM THREEFOLDS 15 of 52

Lemma 4.8. Let 𝑆 be a K3 surface of degree 𝑑 and 𝐻𝑆 the ample polarization. Let 𝐸 be a 𝜇𝐻𝑆
-

semistable sheaf in D𝑏(𝑆) with rk(𝐸) ⩾ 2. Then

ch2(𝐸)

𝐻2
𝑆
⋅ rk(𝐸)

⩽
1

2
𝜇𝐻𝑆

(𝐸)2 −
3

4𝑑
.

Proof. Let 𝑣(𝐸) be the Mukai vector of 𝐸. We have

𝑣(𝐸)2 = 𝐻2
𝑆 ⋅ ch1(𝐸)2 − 2 rk(𝐸)2 − 2 rk(𝐸) ⋅ ch2(𝐸)

⩾ −2 ⩾ −
1

2
rk(𝐸)2.

Dividing through by rk(𝐸)2 and rearranging, we get

ch2(𝐸)

rk(𝐸)
⩽

1

2
𝜇𝐻𝑆

(𝐸)2𝐻2
𝑆 −

3

4

as required. □

Proof of Theorem 4.7. Let 𝑓∶ [0, 1] → ℝ be defined as

𝑓(𝑡) ∶= max
{

1

2
𝑡2 −

3

4𝑑
, 𝑡2 −

1

2
𝑡
}
.

Note that 𝑓 is star-shaped [27, Definition 3.2] and satisfies 𝑓(0) = 0 and 𝑓(1) = 1∕2 as well as

𝑡2 −
1

2
𝑡 ⩽ 𝑓(𝑡) ⩽

1

2
𝑡2

for all 𝑡 ∈ [0, 1]. We now follow the strategy of proof in [27, Theorem 4.3]. Assume for a contra-
diction that there is an 𝐸 ∈ D𝑏(𝑋) such that the inequality in the statement of Theorem 4.7 is
not true. Then conditions (a) and (b) in [27, Lemma 3.3] are satisfied for 𝑓. Then by [27], the
restriction 𝐸|𝑆𝑑

where 𝑆𝑑 is a general hyperplane section of 𝑋𝑑 is 𝜇𝐻𝑆𝑑
-semistable. Also note that

𝜇𝐻𝑆𝑑
(𝐸|𝑆𝑑

) = 𝜇𝐻(𝐸) and 𝑆𝑑 is a smooth K3 surface. But then by assumption,

ch2(𝐸|𝑆𝑑
)

𝐻2
𝑆𝑑

⋅ rk(𝐸|𝑆𝑑
)

>
1

2
𝜇𝐻𝑆𝑑

(𝐸)2 −
3

4𝑑
,

which contradicts Proposition 4.8, so the assumption is false and the result follows. □

4.4 Stability conditions on the Kuznetsov component of a GM
threefold

Proposition 5.1 in [4] gives a criterion for checking when weak stability conditions on a triangu-
lated category can be used to induce stability conditions on a subcategory. Each of the criteria of
this proposition can be checked for𝑋 ⊂ D𝑏(𝑋) to give stability conditions on𝑋 .
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16 of 52 JACOVSKIS et al.

More precisely, let (𝛼, 𝛽) = Coh0
𝛼,𝛽

(𝑋) ∩ 𝑋 and 𝑍(𝛼, 𝛽) = 𝑍0
𝛼,𝛽

|𝑋
. Furthermore, if

we take suitable (𝛼, 𝛽), by [4, Theorem 6.9] and [48, Proposition 3.2], we have the
following.

Theorem4.9. Let𝑋 be aGM threefold. Then𝜎(𝛼, 𝛽) is a stability condition on𝑋 for all (𝛼, 𝛽) ∈ 𝑉,
where

𝑉 ∶= {(𝛼, 𝛽)∶ −
1

10
< 𝛽 < 0, 0 < 𝛼 < −𝛽}.

Now we introduce a special class of stability condition, which will play a central role in our
paper.

Definition 4.10. Let 𝜎 be a stability condition on a triangulated category . It is called Serre-
invariant if 𝑆 ⋅ 𝜎 = 𝜎 ⋅ g for some g ∈ G̃L

+
(2, ℝ), where 𝑆 is the Serre functor of.

We recall a recent result proved in [48].

Theorem4.11. Let𝑋 be aGM threefold and𝜎 (resp.𝜎′) be a stability condition on𝑢(𝑋) (resp.𝑋)
defined by [4]. Then 𝜎 (resp. 𝜎′) is Serre-invariant.

Proposition 4.12. Let 𝑋 be a GM threefold and 𝐸 a nonzero object in𝑋 such that ext1(𝐸, 𝐸) ⩽ 3

and −𝜒(𝐸, 𝐸) is not a perfect square. Then 𝐸 is 𝜎-stable for every Serre-invariant stability condition
𝜎 on𝑋 .

Proof. The proof is the same as in [54, Lemma 9.12]. We omit the details. □

5 PROJECTION OF  INTO𝒖(𝑿)

In this section, we consider the object that results from projecting the vector bundle  into𝑢(𝑋),
and its stability in𝑢(𝑋). We start with a lemma.

Lemma 5.1. Let 𝑋 be a GM threefold.

(1) RHom∙((−𝐻), ) = RHom∙( ,∨) = 𝑘2 when 𝑋 is ordinary.
(2) RHom∙((−𝐻), ) = RHom∙( ,∨) = 𝑘3 ⊕ 𝑘[−1] when 𝑋 is special.
(3) RHom∙( ,(−𝐻)) = 𝑘[−2].
(4) RHom∙(∨, ) = RHom∙(∨,) = 𝑘[−2].

Proof. When 𝑋 is ordinary, (1) and (2) follow from the Koszul resolution of 𝑋 ⊂ Gr(2, 5)

and the Borel–Weil–Bott Theorem. When 𝑋 is special with the double cover 𝜋∶ 𝑋 → 𝑌, note
that 𝜋∗𝑋 = 𝑌 ⊕ 𝑌(−1). Then the (1) and (2) follow from the projection formula and [53,
Lemma 2.14, Proposition 2.15]. And applying Hom(−, ) to (1) and using Serre duality, we get
RHom∙( ,(−𝐻)) = RHom∙(, )∨[−3] = 𝑘[−2], which proves (3). Finally, (4) follows from
applying Hom(−, ) to (1) and using Serre duality and RHom∙( , ) = 𝑘. □
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CATEGORICAL TORELLI FOR GM THREEFOLDS 17 of 52

5.1 The projection of  into𝒖(𝑿)

Let𝜋 ∶= 𝐑𝑋(−𝐻)𝐑(−𝐻) ∶ D𝑏(𝑋) → 𝑢(𝑋) be the right adjoint to the inclusion𝑢(𝑋) ↪ D𝑏(𝑋).
Here,𝑢(𝑋) = ⟨ ,𝑋⟩⟂ is the original Kuznetsov component.
Lemma 5.2. The projection object 𝜋() is the unique object that fits into a nontrivial exact triangle

(−𝐻)[1] → 𝜋() →  . (2)

Proof. By Serre duality, we have RHom∙( , (−𝐻)) = RHom∙( , )∨[−3] = 𝑘[−3]. Then,
we have an exact triangle 𝐑(−𝐻) →  → (−𝐻)[3]. And by (1), we see 𝐑𝑋(−𝐻)(−𝐻) =

(−𝐻)[−1]. Thus, from 𝐑𝑋(−𝐻) =  , we obtain the triangle (2). It is nontrivial since
𝜋() ∈ 𝑢(𝑋), so  cannot be a direct summand of 𝜋(). Finally, the uniqueness follows from
Lemma 5.1 (4). □

Lemma 5.3. Let 𝑋 be a GM threefold. Then, we have

∙ RHom∙(𝜋(), 𝜋()) = 𝑘 ⊕ 𝑘2[−1] when 𝑋 is ordinary.
∙ RHom∙(𝜋(), 𝜋()) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2] when 𝑋 is special.

Hence, 𝜋() is stable with respect to every Serre-invariant stability condition on𝑢(𝑋).

Proof. The first statement follows fromapplyingHom(−, ) to triangle (2) andLemma5.1, and also
the fact that RHom∙(𝜋(), 𝜋()) = RHom∙(𝜋(), ) which is by adjunction. The last statement
follows from Lemma 4.12. □

5.2 The analogous projection object for𝑿

In this subsection, we state and prove the analogous results as in Subsection 5.1, except for 𝑋

instead of 𝑢(𝑋). Let 𝜋′ ∶= 𝐑𝐑𝑋(−𝐻) ∶ D𝑏(𝑋) → 𝑋 be the right adjoint to the inclusion
𝑋 ↪ D𝑏(𝑋).

Lemma 5.4. The projection object 𝜋′(∨) is the unique object fits into a nontrivial exact triangle

[1] → 𝜋′(∨) → ∨. (3)

Proof. The proof is completely analogous to the proof of Lemma 5.2. By Serre duality, we have
the vanishing RHom∙(∨,𝑋(−𝐻)) = RHom∙(𝑋,∨)∨ = 0. Thus, 𝜋′(∨) = 𝐑

∨. Then, the
result follows from Lemma 5.1 (4). Finally, the uniqueness also follows from Lemma 5.1 (4) and
(3) is nontrivial since RHom∙(∨, 𝜋′(∨)) = 0. □

Remark 5.5. Later, in Section 7, we will see that we have 𝜋′(∨) ≅ pr(𝐼𝐶)[1] where 𝐶 ⊂ 𝑋 is a
conic such that 𝐼𝐶 ∉ 𝑋 .

Lemma 5.6. Let 𝑋 be a GM threefold. Then

∙ RHom∙(𝜋′(∨), 𝜋′(∨)) = 𝑘 ⊕ 𝑘2[−1] when 𝑋 is ordinary.
∙ RHom∙(𝜋′(∨), 𝜋′(∨)) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2] when 𝑋 is special.

Hence, 𝜋′(∨) is stable with respect to every Serre-invariant stability condition on𝑋 .
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18 of 52 JACOVSKIS et al.

Proof. It is not hard to check that Ξ(𝜋()) ≅ 𝜋′(∨)[1], where Ξ is the equivalence𝑢(𝑋) ≃ 𝑋

in Lemma 3.7. Then the result follows from Lemma 5.3. □

6 CONICS ON GM THREEFOLDS

In this section, we collect some useful results regarding the birational geometry of GM threefolds
and their Hilbert schemes of conics. The results in this section are all from [13, 41], and [22].
Recall that a conic means a closed subscheme 𝐶 ⊂ 𝑋 with Hilbert polynomial 𝑝𝐶(𝑡) = 1 + 2𝑡,

and a line means a closed subscheme 𝐿 ⊂ 𝑋 with Hilbert polynomial 𝑝𝐿(𝑡) = 1 + 𝑡. Denote their
Hilbert schemes by (𝑋) and Γ(𝑋), respectively.

6.1 Conics on ordinary GM threefolds

Let 𝑋 be an ordinary GM threefold. Recall that it is a quadric section of a linear section of codi-
mension 2 of the Grassmannian Gr(2, 5) = Gr(2, 𝑉5), where 𝑉5 is a five-dimensional complex
vector space. Let 𝑉𝑖 be an 𝑖-dimensional vector subspace of 𝑉5. There are two types of 2-planes in
Gr(2, 5); 𝜎-planes are given set-theoretically as {[𝑉2] ∣ 𝑉1 ⊂ 𝑉2 ⊂ 𝑉4}, and 𝜌-planes are given by
{[𝑉2] ∣ 𝑉2 ⊂ 𝑉3}.

Remark 6.1. In [13, Section 3.1], the𝜎-planes and𝜌-planes are called𝛼-planes and𝛽-planes, respec-
tively.

By [13, Section 3.1] and [24, Section 3.1], we have the following classification of conics on 𝑋.

Definition 6.2 [13, p. 5].

∙ A conic 𝐶 ⊂ 𝑋 is called a 𝜏-conic if the 2-plane ⟨𝐶⟩ is not contained in Gr(2, 𝑉5), there is a
unique 𝑉4 ⊂ 𝑉5 such that 𝐶 ⊂ Gr(2, 𝑉4), the conic 𝐶 is reduced and if it is smooth, the union
of corresponding lines in ℙ(𝑉5) is a smooth quadric surface in ℙ(𝑉4).

∙ A conic 𝐶 ⊂ 𝑋 is called a 𝜎-conic if the 2-plane ⟨𝐶⟩ spanned by 𝐶 is an 𝜎-plane, and if there is a
unique hyperplane 𝑉4 ⊂ 𝑉5 such that 𝐶 ⊂ Gr(2, 𝑉4) and the union of the corresponding lines
in ℙ(𝑉5) is a quadric cone in ℙ(𝑉4).

∙ A conic 𝐶 ⊂ 𝑋 is called a 𝜌-conic if the 2-plane ⟨𝐶⟩ spanned by 𝐶 is a 𝜌-plane, and the union of
corresponding lines in ℙ(𝑉5) is this 2-plane.

The following lemma is very useful for computations:

Lemma 6.3. Let 𝑋 be an ordinary GM threefold and 𝐶 be a conic on 𝑋.

(1) If 𝐶 is a 𝜏-conic, then we have RHom∙( , 𝐼𝐶) = 𝑘 and RHom∙(∨, 𝐼𝐶) = 0.
(2) If 𝐶 is a 𝜌-conic, then we have RHom∙( , 𝐼𝐶) = 𝑘2 ⊕ 𝑘[−1] and RHom∙(∨, 𝐼𝐶) = 0.
(3) If 𝐶 is a 𝜎-conic, then we have RHom∙( , 𝐼𝐶) = 𝑘 and RHom∙(∨, 𝐼𝐶) = 𝑘[−1] ⊕ 𝑘[−2].

Proof. Note that if Hom( , 𝐼𝐶) = 𝑘𝑎, then 𝐶 ⊂ Gr(2, 5 − 𝑎) ∩ 𝑋. Since for any conic 𝐶, there
is some 𝑉4 such that 𝐶 ⊂ Gr(2, 𝑉4), then we have hom( , 𝐼𝐶) ⩾ 1 for any conic 𝐶. Now if
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CATEGORICAL TORELLI FOR GM THREEFOLDS 19 of 52

hom( , 𝐼𝐶) ⩾ 2, we know that 𝐶 is contained in a 𝜌-plane Gr(2, 3). Since ⟨𝐶⟩ is not in Gr(2, 5)

for a 𝜏-conic 𝐶, and ⟨𝐶⟩ is a 𝜎-plane {𝑉2|𝑉1 ⊂ 𝑉2 ⊂ 𝑉4} for a 𝜎-conic, for these two types of con-
ics, we haveHom( , 𝐼𝐶) = 𝑘. Also, for a 𝜌-conic 𝐶, since ⟨𝐶⟩ = Gr(2, 3), we have hom( , 𝐼𝐶) ⩾ 2.
But if hom( , 𝐼𝐶) ⩾ 3, we know that 𝐶 ⊂ Gr(2, 2) that is impossible. Hence, for a 𝜌-conic 𝐶, we
have Hom( , 𝐼𝐶) = 𝑘2. Now the result for Ext groups follows from applying Hom( , −) to the
short exact sequence 0 → 𝐼𝐶 → 𝑋 → 𝐶 → 0 and 𝜒( , 𝐼𝐶) = 1.
First, by stability and Serre duality, we haveHom(∨, 𝐼𝐶) = Ext3(∨, 𝐼𝐶) = 0. From𝜒(∨, 𝐼𝐶) =

0, we only need to compute Ext1(∨, 𝐼𝐶). Since RHom∙(𝑋, 𝐼𝐶) = 0, applying Hom(−, 𝐼𝐶) to
the tautological sequence, we have Hom(∨, 𝐼𝐶) = Ext1(∨, 𝐼𝐶). Note that if Hom(∨, 𝐼𝐶) =

𝑘𝑎, then 𝐶 ⊂ Gr(2 − 𝑎, 5 − 𝑎) ∩ 𝑋. Thus, we have hom(∨, 𝐼𝐶) ⩽ 1 for any conic 𝐶. And since
hom(∨, 𝐼𝐶) = 1 if and only if 𝐶 is contained in the zero locus of a global section of , which is a
𝜎-3-plane in Gr(2, 5), we know that Hom(∨, 𝐼𝐶) = 0 for 𝐶 of type 𝜏 or 𝜌, and Hom(∨, 𝐼𝐶) = 𝑘

for a 𝜎-conic. Then the result follows. □

Now we recall some properties of the Fano surface of conics (𝑋).

Theorem 6.4 [13, 41]. Let 𝑋 be an ordinary GM threefold. Then (𝑋) is an irreducible projective
surface. If 𝑋 is furthermore general, then (𝑋) is smooth.

It is a fact that there is a unique 𝜌-conic on 𝑋, and there is a curve 𝐿𝜎 ⊂ (𝑋) parameterize all
𝜎-conics on 𝑋 (cf. [13, Section 5.1]), and we denote it by 𝑐𝑋 . Furthermore, we have the following
result that is a corollary of Logachev’s tangent bundle theorem [41, Section 4].

Lemma 6.5 [13, p. 16]. The only rational curve in (𝑋) is 𝐿𝜎 . Furthermore, there exists a surface
𝑚(𝑋) and a map (𝑋) → 𝑚(𝑋) that contracts 𝐿𝜎 to a point [𝜋]. If 𝑋 is general, then 𝑚(𝑋) is the
minimal surface of (𝑋).

Theorem 6.6 [13, Section 5.2]. Let 𝑋 be a general ordinary GM threefold. Then there is a natural
involution 𝜄 on 𝑚(𝑋), switching the points [𝑐𝑋] and [𝜋].

Another important result that we require is Logachev’s reconstruction theorem. This was
originally proved in [41, Theorem 7.7], and then reproved later in [13, Theorem 9.1].

Theorem 6.7 (Logachev’s reconstruction theorem). Let 𝑋 and 𝑋′ be general ordinary GM
threefolds. If (𝑋) ≅ (𝑋′), then 𝑋 ≅ 𝑋′.

6.2 Conic and line transforms

For this section, we follow [13, Section 6.1]. Let 𝑋 be a general ordinary GM threefold, and let 𝐶
be a conic. Then, in [13, § 6.1, Theorem 6.4], the authors construct a new GM threefold 𝑋𝐶 and a
birational map 𝜓𝐶 ∶ 𝑋 ⤏ 𝑋𝐶 , called the conic transform. Similarly, for any line 𝐿 ⊂ 𝑋, a new GM
threefold 𝑋𝐿 and a birational morphism 𝜓𝐿 ∶ 𝑋 → 𝑋𝐿 are constructed in [13, Section 6.2], called
the line transform.
Note that in [14], such an𝑋𝐶 is called the period partner of𝑋, and the line transforms are called

the period duals. We now list some important results about conic and line transforms below.
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20 of 52 JACOVSKIS et al.

Theorem6.8 [13, Theorem 6.4]. Let𝑋 be a general ordinary GM threefold, and let𝐶 ⊂ 𝑋 be a conic.
Then (𝑋𝐶) is isomorphic to 𝑚(𝑋) blown up at the point [𝐶] ∈ 𝑚(𝑋), where 𝑚(𝑋) is the minimal
surface of (𝑋).

Proposition 6.9 [13, Theorem 6.4, Remark 7.2]. Let 𝑋 be a general ordinary GM threefold. Then
the isomorphism classes of conic transforms of 𝑋 are parametrized by the surface 𝑚(𝑋)∕𝜄.

Theorem 6.10 [34, Theorem 1.6]. Let 𝑋 be a general ordinary GM threefold. Then, the Kuznetsov
components of all conic transforms and line transforms of 𝑋 are equivalent to𝑋 .

6.3 Conics on special GM threefolds

Let 𝑋 be a special GM threefold. Recall that 𝑋 is a double cover 𝑋 → 𝑌 of a degree five del
Pezzo threefold 𝑌 with branch locus a quadric hypersurface  ⊂ 𝑌. When 𝑋 is general,  is a
smooth K3 surface of Picard number 1 and degree 10. Recall that 𝑌 is a codimension 3 linear sec-
tion ofGr(2, 5). Let  be the tautological quotient bundle on 𝑌. We recall some properties of (𝑋)

from [22].

Theorem6.11 [22]. Let𝑋 be a special GM threefold. Then (𝑋) has two components 1 and 2. One
of the components 2 ≅ Σ(𝑌) ≅ ℙ2 parameterizes the preimage of lines on 𝑌. Moreover, when 𝑋 is
general, (𝑋) is smooth away from 1 ∩ 2.

The following lemma will be useful in computations; it is similar to Lemma 6.3.

Lemma 6.12. Let𝑋 be a special GM threefold and 𝐶 a conic on𝑋. Then RHom∙(∨, 𝐼𝐶) ≠ 0 if and
only if 𝐶 is the preimage of a line on 𝑌. In this case, RHom∙(∨, 𝐼𝐶) = 𝑘[−1] ⊕ 𝑘[−2], and such a
family of conics is parametrized by the Hilbert scheme of lines Σ(𝑌) ≅ ℙ2 on 𝑌.

Proof. The proof is almost the same as the second part of the proof of Lemma 6.3. The same argu-
ment shows that RHom∙(∨, 𝐼𝐶) ≠ 0 if and only if Hom(∨, 𝐼𝐶) ≠ 0. The image of a nontrivial
map ∨ → 𝐼𝐶 is the ideal sheaf of the zero locus of a section 𝑠 of , which is the preimage of
the zero locus of a section of  . By [53, Lemma 2.18], the zero locus of a section of  is either
a line or a point. Thus, the zero locus of a section of  is either the preimage of a line on 𝑌

that is a conic on 𝑋, or a zero-dimensional closed subscheme of length two. But this zero locus
contains a conic 𝐶 ⊂ 𝑋, so 𝐶 = 𝑍(𝑠) is the preimage of a line on 𝑌 and the map ∨ → 𝐼𝐶 is sur-
jective. In particular, such conics are exactly the preimages of lines on 𝑌 and are parametrized by
Σ(𝑌) ≅ ℙ2. □

7 CONICS AND BRIDGELANDMODULI SPACES

In this section, we study the moduli space of 𝜎-stable objects of the (−1)-class −𝑥 in the alterna-
tive Kuznetsov component 𝑋 of a GM threefold 𝑋 and its relation to (𝑋). Our main result
in this section is Theorem 7.12, which realizes the Bridgeland moduli space as a contraction
of (𝑋).
First, we study those conics 𝐶 such that 𝐼𝐶 ∉ 𝑋 .
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CATEGORICAL TORELLI FOR GM THREEFOLDS 21 of 52

Proposition 7.1. Let 𝐶 ⊂ 𝑋 be a conic on a GM threefold 𝑋. Then, 𝐼𝐶 ∉ 𝑋 if and only if

(1) 𝐶 is a 𝜎-conic when 𝑋 is ordinary. In particular, such a family of conics is parametrized by the
line 𝐿𝜎 .

(2) 𝐶 is the preimage of a line on 𝑌 when 𝑋 is special. In particular, such a family of conics is
parametrized by the Hilbert scheme of lines Σ(𝑌) ≅ ℙ2 on 𝑌.

Moreover, we have an exact sequence

0 →  → ∨ → 𝐼𝐶 → 0.

Proof. Note that 𝐼𝐶 ∉ 𝑋 if and only if RHom∙(∨, 𝐼𝐶) ≠ 0. When 𝑋 is ordinary, (1) follows from
Lemma 6.3. When 𝑋 is special, we deduce (2) from Lemma 6.12. Note that since 𝐼𝐶 ∉ 𝑋 , we
haveHom(∨, 𝐼𝐶) ≠ 0. The nontrivial map∨ → 𝐼𝐶 is surjective by the arguments in Lemma 6.3
and 6.12. Note that by the stability of ∨, the kernel of ∨ ↠ 𝐼𝐶 is 𝜇-stable with the same Chern
character as  , hence we have ker(∨ ↠ 𝐼𝐶) ≅  by [13, Proposition 4.1]. □

Proposition 7.2. Let 𝑋 be a GM threefold and 𝐶 ⊂ 𝑋 a conic on 𝑋. If 𝐼𝐶 ∉ 𝑋 , then we have the
exact triangle

[1] → pr(𝐼𝐶) → ∨

and pr(𝐼𝐶) ≅ 𝜋′(∨)

Proof. By Proposition 7.1, 𝐼𝐶 fits into the short exact sequence

0 →  → ∨ → 𝐼𝐶 → 0.

Applying the projection functor to this exact sequence, and note that applying the functor pr to the
dual exact sequence of (1) gives pr(∨) = 0. Then, we have pr(𝐼𝐶) ≅ pr()[1]. Now we compute
the projection pr(). SinceRHom∙(∨, ) ≅ 𝑘[−3], we get an exact triangle ∨[−3] →  → 𝐋∨ .
Now applying 𝐋𝑋

to this triangle and using 𝐋𝑋
∨ = ∨[1], we get

∨[−2] →  → pr().

Therefore, we obtain the triangle

[1] → pr()[1] → ∨,

and the desired result follows from Lemma 5.4. □

Now the following two results follow from Proposition 7.2 and Lemma 5.6.

Lemma 7.3. Let 𝑋 be a GM threefold. If 𝐶 ⊂ 𝑋 is a conic such that 𝐼𝐶 ∉ 𝑋 , then

∙ RHom∙(pr(𝐼𝐶), pr(𝐼𝐶)) = 𝑘 ⊕ 𝑘2[−1] when 𝑋 is ordinary.
∙ RHom∙(pr(𝐼𝐶), pr(𝐼𝐶)) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2] when 𝑋 is special.
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22 of 52 JACOVSKIS et al.

Lemma 7.4. Let 𝑋 be a GM threefold. If 𝐼𝐶 ∉ 𝑋 , the projection pr(𝐼𝐶)[1] is stable with respect to
every Serre-invariant stability condition on𝑋 .

When 𝐼𝐶 ∈ 𝑋 , we cannot use Proposition 4.12 to prove the Bridgeland stability of 𝐼𝐶 , since
(𝑋) can be singular and Ext1(𝐼𝐶, 𝐼𝐶)may have large dimension. Instead, we use a wall-crossing
argument and the uniqueness of Serre-invariant stability conditions (Theorem A.10).

Lemma 7.5. Let𝑋 be a GM threefold. Let 𝐹 be an object with ch⩽2(𝐹) = (1, 0, −2𝐿). Then there are
no walls for 𝐹 in the range −1

2
⩽ 𝛽 < 0 and 𝛼 > 0.

Proof. Recall that by [2, Theorem 4.13], 𝛽 = 0 is the unique vertical wall of 𝐹. Any other wall is a
semicircle centered along the 𝛽-axis, and its apex lies on the hyperbola 𝜇𝛼,𝛽(𝐹) = 0. Moreover, no
two walls intersect.
Note that when 𝜇𝛼,𝛽(𝐹) = 0 holds, we have 𝛽 < −

√
2

5
< −1

2
; thus, we know that there is no

semicircular wall centered in the interval −1

2
⩽ 𝛽 < 0. Therefore, any semicircular wall in the

range −1

2
⩽ 𝛽 < 0will intersect 𝛽 = −1

2
. To prove the statement, we only need to show that there

are no walls when 𝛽 = −1

2
. This follows from the fact that ch

−1
2

1
(𝐹) is minimal. □

Lemma 7.6. Let𝐶 ⊂ 𝑋 be a conic on a GM threefold𝑋 such that 𝐼𝐶 ∈ 𝑋 . Then 𝐼𝐶[1] is stable with
respect to every Serre-invariant stability condition on𝑋 .

Proof. By Lemma 4.5 and Lemma 7.5, we know that 𝐼𝐶 is 𝜎𝛼,𝛽-semistable for every (𝛼, 𝛽) ∈ 𝑉.
Since 𝐼𝐶 is torsion-free, 𝐼𝐶[1] ∈ Coh0

𝛼,𝛽
(𝑋) is 𝜎0

𝛼,𝛽
-semistable. Thus, 𝐼𝐶[1] ∈ (𝛼, 𝛽) is 𝜎(𝛼, 𝛽)-

semistable. Then, stability with respect to every Serre-invariant stability condition follows from
Theorem 4.11 and Theorem A.10. □

7.1 The Bridgeland moduli space of class −𝒙

In this subsection, we are going to describe the Bridgeland moduli space 𝜎(𝑋, −𝑥) in
Theorem 7.12.
The proofs in this section seem technical. However, the only results in this section that will be

used in other sections are Proposition 7.11 in the proof of Theorem 7.12, so there is no harm for
readers in skipping this whole section and assuming Proposition 7.11 and Theorem 7.12.
We start with two lemmas.

Lemma 7.7. Let 𝑋 be a GM threefold and 𝐸 a 𝜇-semistable sheaf on 𝑋 with truncated Chern
character ch⩽2(𝐸) = (2, −𝐻, 𝑎𝐿). If 𝑎 ⩾ 1 and 𝑐3(𝐸) ⩾ 0, then we have 𝐸 ≅  .

Proof. By Lemma 4.6, we have 𝑎 ⩽ 1 which means 𝑎 = 1 by our assumption. Then 𝑐1(𝐸) = −1

and 𝑐2(𝐸) = 4. Since 𝑐3(𝐸) ⩾ 0, by [11, Proposition 3.5], we have 𝜒(𝐸) = 0. This implies 𝑐3(𝐸) = 0.
Moreover, 𝐸∨∨ also satisfies the assumptions above. Hence, by the previous argument, we have
𝑐1(𝐸

∨∨) = −1, 𝑐2(𝐸
∨∨) = 4 and 𝑐3(𝐸

∨∨) = 0 as well. In other words, 𝐸 = 𝐸∨∨. Since 𝑐3(𝐸) = 0 and
𝐸 is reflexive of rank 2, it is a vector bundle. Moreover, 𝐸 is a globally generated bundle by [11,
Proposition 3.5]. Thus, 𝐸 ≅  by [13, Proposition 4.1]. □
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CATEGORICAL TORELLI FOR GM THREEFOLDS 23 of 52

Lemma 7.8. Let 𝑋 be a GM threefold and 𝐸 a 𝜇-semistable sheaf on 𝑋 with ch(𝐸) = ch(). Then
we have 𝐸 ≅ .

Proof. First we show that ℎ2(𝐸) = 0; then from𝜒(𝐸) = 5, we have ℎ0(𝐸) ⩾ 5. Indeed, if ℎ2(𝐸) ≠ 0,
then Hom(𝐸,𝑋(−𝐻)[1]) ≠ 0 by Serre duality. Therefore, we have a nontrivial extension

0 → 𝑋(−𝐻) → 𝐹 → 𝐸 → 0.

If𝐹 is not 𝜇-semistable, then by the stability of𝑋(−𝐻) and𝐸, theminimal destabilizing quotient
sheaf 𝐹′ of 𝐹 has ch⩽1(𝐹

′) = (1, −𝐻). Thus, 𝐹′∨∨ ≅ 𝑋(−𝐻). But if we apply Hom(−,𝑋(−𝐻))

to the exact sequence above, we obtain Hom(𝐹,𝑋(−𝐻)) = 0 since this extension is nontrivial,
which gives a contradiction. Then,𝐹 is𝜇-semistablewith ch⩽2(𝐹) = (4, 0, 4𝐿), which is impossible
since Δ(𝐹) < 0.
Now we can take five linearly independent elements in 𝐻0(𝐸) and obtain a map 𝑡 ∶ ⊕5

𝑋
→

𝐸. From the stability of 𝑋 and 𝐸, we have 𝜇(Im(𝑡)) = 0 or 𝜇(Im(𝑡)) = 1

3
. But the first case

cannot happen, since then Im(𝑡) is the direct sum of a number of copies of 𝑋 , and this con-
tradicts the construction of 𝑡. Thus, 𝜇(Im(𝑡)) = 1

3
and ch⩽1(Im(𝑡)) = (3,𝐻). Also ch⩽2(ker(𝑡)) =

(2, −𝐻, 𝑥𝐿), where 𝑥 ⩾ 1. Note that ker(𝑡) is reflexive, thus we have 𝑐3(ker(𝑡)) ⩾ 0 since ker(𝑡) has
rank 2. Then by stability of 𝑋 and Hom(𝑋, ker(𝑡)) = 0, it is not hard to see that ker(𝑡) is 𝜇-
semistable. Thus, by Lemma 7.7, we have ker(𝑡) ≅  . Therefore, ch(Im(𝑡)) = ch(𝐸) and thus 𝑡 is
surjective.
Now applying Hom(, −) to the exact sequence

0 →  → ⊕5
𝑋

→ 𝐸 → 0,

from RHom∙(,𝑋) = 0 and Ext1(, ) = 𝑘, we haveHom(, 𝐸) = 𝑘. Thus, from the stability of
𝐸 and , we have 𝐸 ≅  and the result follows. □

Now we introduce some notations. Let 𝛼 > 0 and 𝛽 < 0. For an object 𝐸 ∈ D𝑏(𝑋), the limit
central charge 𝑍0

0,0
(𝐸) is defined as the limit of 𝑍0

𝛼,𝛽
(𝐸) when (𝛼, 𝛽) → (0, 0). Note that 𝑍0

𝛼,𝛽
(𝐸) is

given byℚ-linear combinations of𝛼, 𝛽, 𝛼2, 𝛽2, thus such a limit𝑍0
0,0

(𝐸) always exists. For𝑍0
0,0

(𝐸) ≠

0, we can also define the limit slope 𝜇0
0,0

(𝐸) as follows:

∙ If Im(𝑍0
0,0

(𝐸)) ≠ 0, then we define 𝜇0
0,0

(𝐸) ∶= −
Re(𝑍0

0,0
(𝐸))

Im(𝑍0
0,0

(𝐸))
.

∙ If Im(𝑍0
0,0

(𝐸)) = 0 and Re(𝑍0
0,0

(𝐸)) > 0, then we define 𝜇0
0,0

(𝐸) ∶= −∞.
∙ If Im(𝑍0

0,0
(𝐸)) = 0 and Re(𝑍0

0,0
(𝐸)) < 0, then we define 𝜇0

0,0
(𝐸) ∶= +∞.

Note that 𝑍0
0,0

(𝐸) = 0 if and only if ch⩽2(𝐸) is a multiple of ch⩽2(𝑋).
Let 𝐸 ∈ Coh0

𝛼,𝛽
(𝑋). By continuity, we can find a neighborhood 𝑈𝐸 of the origin such that for

any (𝛼, 𝛽) ∈ 𝑈𝐸 , the slopes 𝜇0
𝛼,𝛽

(𝐸) and 𝜇0
0,0

(𝐸) are both negative or positive. Let 𝐹 ∈ Coh0
𝛼,𝛽

(𝑋)

be another object such that 𝐸, 𝐹 are both 𝜎0
𝛼,𝛽
-semistable in a neighborhood 𝑈𝐸,𝐹 of the ori-

gin. If 𝜇0
0,0

(𝐸) > 𝜇0
0,0

(𝐹), then by continuity, we can find a smaller neighborhood 𝑈′
𝐸,𝐹

such that
𝜇0

𝛼,𝛽
(𝐸) > 𝜇0

𝛼,𝛽
(𝐹) holds for every (𝛼, 𝛽) ∈ 𝑈′

𝐸,𝐹
. Thus, we haveHom(𝐸, 𝐹) = 0. We will use these

two elementary facts repeatedly.
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24 of 52 JACOVSKIS et al.

Proposition 7.9. If 𝐹 ∈ (𝛼, 𝛽) is 𝜎(𝛼, 𝛽)-stable such that [𝐹] = −𝑥 and 𝐹 is 𝜎0
𝛼,𝛽
-semistable for

some (𝛼, 𝛽) ∈ 𝑉, then 𝐹 ≅ 𝐼𝐶[1] for a conic 𝐶 on 𝑋.

Proof. Since 𝐹 is 𝜎0
𝛼,𝛽
-semistable and 𝜇0

𝛼,𝛽
(𝐹) > 0, as in [51, Proposition 4.6], there is a triangle

𝐹1[1] → 𝐹 → 𝐹2,

where 𝐹1 ∈ Coh𝛽(𝑋) with 𝜇+
𝛼,𝛽

(𝐹1) < 0 and 𝐹2 is supported on points. Thus, ch(𝐹1) =

(1, 0, −2𝐿,𝑚𝑃), where 𝑚 is the length of 𝐹2. By Lemmas 7.5 and 4.5, 𝐹1 is a rank one torsion-
free sheaf; hence, it is the ideal sheaf of a closed subscheme. Thus, by [53, Corollary 1.38], we have
𝑚 ⩽ 0, which means 𝐹2 = 0 and 𝐹1 ≅ 𝐹[−1]. Thus, by Lemma 7.5 again, 𝐹[−1] is a 𝜇-semistable
torsion free sheaf, which is of the form 𝐹[−1] ≅ 𝐼𝐶 for a conic 𝐶 on 𝑋 since Pic(𝑋) = ℤ ⋅ 𝐻. □

When 𝐹 is not 𝜎0
𝛼,𝛽
-semistable for (𝛼, 𝛽) ∈ 𝑉, the argument is more complicated. Our main

tools are the inequalities in [49, 51, Proposition 4.1], Lemma 4.6, and Theorem 4.7, which allow
us to bound the rank and first two Chern characters ch1, ch2 of the destabilizing objects and their
cohomology objects. Since 𝐹 ∈ 𝑋 , by using the Euler characteristics 𝜒(𝑋, −) and 𝜒(∨, −), we
can obtain a bound on ch3. Finally, via a similar argument as in Lemma 7.7, we deduce that the
Harder–Narasimhan factors of 𝐹 are the ones we expect.

Proposition 7.10. If 𝐹 ∈ (𝛼, 𝛽) is 𝜎(𝛼, 𝛽)-stable such that [𝐹] = −𝑥 and 𝐹 is not 𝜎0
𝛼,𝛽
-semistable

for every (𝛼, 𝛽) ∈ 𝑉, then 𝐹 fits into a triangle

[2] → 𝐹 → ∨[1].

Proof. Since there are no walls for 𝐹 tangent to the wall 𝛽 = 0, by the local finiteness of walls
and [7, Proposition 2.2.2], we can find an open neighborhood 𝑈′ of the origin such that the
Harder–Narasimhan filtration with respect to 𝜎0

𝛼,𝛽
is constant for every (𝛼, 𝛽) ∈ 𝑈 ∶= 𝑈′ ∩ 𝑉.

In the following, we will only consider 𝜎0
𝛼,𝛽

for (𝛼, 𝛽) ∈ 𝑈.
Let 𝐵 be the minimal destabilizing quotient object of 𝐹 and 0 → 𝐴 → 𝐹 → 𝐵 → 0 be the desta-

bilizing short exact sequence of 𝐹 in Coh0
𝛼,𝛽

(𝑋). Hence, we know that 𝐴, 𝐵 ∈ Coh0
𝛼,𝛽

(𝑋) and
𝐵 is 𝜎0

𝛼,𝛽
-semistable with 𝜇0,−

𝛼,𝛽
(𝐴) > 𝜇0

𝛼,𝛽
(𝐹) > 𝜇0

𝛼,𝛽
(𝐵) for all (𝛼, 𝛽) ∈ 𝑈. By [4, Remark 5.12],

we have 𝜇0
𝛼,𝛽

(𝐵) ⩾ min{𝜇0
𝛼,𝛽

(𝐹), 𝜇0
𝛼,𝛽

(𝑋), 𝜇0
𝛼,𝛽

(∨)}. Hence, the following relations hold for all
(𝛼, 𝛽) ∈ 𝑈:

(a) 𝜇0
𝛼,𝛽

(𝐴) > 𝜇0
𝛼,𝛽

(𝐹) > 𝜇0
𝛼,𝛽

(𝐵),
(b) Im(𝑍0

𝛼,𝛽
(𝐴)) ⩾ 0, Im(𝑍0

𝛼,𝛽
(𝐵)) > 0,

(c) 𝜇0
𝛼,𝛽

(𝐵) ⩾ min{𝜇0
𝛼,𝛽

(𝐹), 𝜇0
𝛼,𝛽

(𝑋), 𝜇0
𝛼,𝛽

(∨)},
(d) Δ(𝐵) ⩾ 0.

By continuity and taking (𝛼, 𝛽) → (0, 0), we have:

(1) 𝜇0
0,0

(𝐴) ⩾ 𝜇0
0,0

(𝐹) = 0 ⩾ 𝜇0
0,0

(𝐵),
(2) Im(𝑍0

0,0
(𝐴)) ⩾ 0, Im(𝑍0

0,0
(𝐵)) ⩾ 0,

(3) 𝜇0
0,0

(𝐵) ⩾ min{𝜇0
0,0

(𝐹), 𝜇0
0,0

(𝑋), 𝜇0
0,0

(∨)},
(4) Δ(𝐵) ⩾ 0.
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Assume that [𝐴] = 𝑎[𝑋] + 𝑏[𝐻] + 𝑐[𝐿] + 𝑑[𝑃] for integers 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ. Then, we have
[𝐵] = (−1 − 𝑎)[𝑋] − 𝑏[𝐻] + (2 − 𝑐)[𝐿] − (1 + 𝑑)[𝑃]. Then we see

∙ ch(𝐴) = (𝑎, 𝑏𝐻, 𝑐−5𝑏

10
𝐻2,

5
3
𝑏+ 𝑐

2
+𝑑

10
𝐻3),

∙ 𝑍0
0,0

(𝐴) = 𝑏𝐻3 + ( 𝑐−5𝑏

10
𝐻3)𝔦, 𝑍0

0,0
(𝐵) = −𝑏𝐻3 + (2−𝑐+5𝑏

10
𝐻3)𝔦,

∙ 𝜇0
0,0

(𝐴) = 10𝑏

5𝑏−𝑐
, 𝜇0

0,0
(𝐵) = −10𝑏

𝑐−5𝑏−2
.

Note that [𝐹] = −[𝑋] + 2[𝐿] − [𝑃]. From (2), we know 𝑐 − 5𝑏 = 0, 1 or 2. But when 𝑐 −

5𝑏 = 2, it is not hard to see that (𝑐) fails near the origin. Thus, 𝑐 − 5𝑏 = 0 or 1.
We begin with two claims.

Claim 1. We have RHom∙(𝑋, 𝐵) = Hom(𝑋, 𝐵) and RHom∙(𝑋,𝐴) = Ext1(𝑋,𝐴)[−1].

Since 𝐹 ∈ 𝑋 , we only need to prove that Ext𝑖(𝑋,𝐴) = 0 for 𝑖 ≠ 1. Indeed, since 𝑋 ∈

Coh0
𝛼,𝛽

(𝑋) and 𝐹 ∈ 𝑋 , we have Ext𝑖(𝑋,𝐴) = 0 for all 𝑖 ⩽ 0. Also, by Serre duality, we have
Ext𝑖(𝑋,𝐴) = Hom(𝐴,𝑋(−𝐻)[3 − 𝑖]). Thus, from the fact that𝑋(−𝐻) ∈ Coh0

𝛼,𝛽
(𝑋), we obtain

Hom(𝐴,𝑋(−𝐻)[3 − 𝑖]) = 0 for 𝑖 ⩾ 2. Therefore, we have Ext𝑖(𝑋,𝐴) = 0 for 𝑖 ≠ 1.

Claim 2. We have RHom∙(∨, 𝐵) = Hom(∨, 𝐵) and RHom∙(∨, 𝐴) = Ext1(∨, 𝐴)[−1].

Since ∨ and [2] ∈ Coh0
𝛼,𝛽

(𝑋), the argument is the same as Claim 1.
Now we deal with the cases 𝑐 − 5𝑏 = 0 and 𝑐 − 5𝑏 = 1 separately.
Case 1 (𝒄 − 𝟓𝒃 = 𝟎):
First, we assume that 𝑐 − 5𝑏 = 0. By 7.1, we have:

(1) −2 ⩽ 𝑏 ⩽ 0,
(2) 𝑏2 + 2𝑎+2

5
⩾ 0.

Case 1.1 (𝒃 = 𝟎): If 𝑏 = 0, then 𝑐 = 0 and 𝑎 ⩾ −1. In this case, we have ch⩽2(𝐵) =

(−1 − 𝑎, 0, 2𝐿). If 𝑎 = −1, then ch⩽2(𝐴) = ch⩽2(𝑋[1]) = (−1, 0, 0), which is impossible since
Im(𝑍0

𝛼,𝛽
(𝐴)) < 0 for (𝛼, 𝛽) ∈ 𝑉. Thus, 𝑎 ⩾ 0, and 𝑎 ≠ 0 otherwise 𝜇0

𝛼,𝛽
(𝐹) = 𝜇0

𝛼,𝛽
(𝐵) for any

(𝛼, 𝛽) ∈ 𝑉. But then we have 𝜇0
𝛼,𝛽

(𝐹) < 𝜇0
𝛼,𝛽

(𝐵)when (𝛼, 𝛽) ∈ 𝑈 is sufficiently close to the origin.
This contradicts our assumption on 𝐵.
Case 1.2 (𝒃 = −𝟏): If 𝑏 = −1, we have 𝑐 = −5. In this case, ch⩽2(𝐴) = (𝑎, −𝐻, 0). Since

𝐴 ∈ Coh0
𝛼,𝛽

(𝑋), we have Im(𝑍0
𝛼,𝛽

(𝐴)) ⩾ 0 for every (𝛼, 𝛽) ∈ 𝑈. Note that Im(𝑍0
𝛼,𝛽

(𝐴)) = (𝛽 +

𝑎(𝛽2−𝛼2)

2
)𝐻3 and 0 < 𝛼 < −𝛽, and we have 𝑎 ⩾

−2𝛽

𝛽2−𝛼2 . But note that when 𝛼 =
−𝛽

2
and 𝛽 → 0, we

have −2𝛽

𝛽2−𝛼2 → +∞, thus we get a contradiction since 𝑎 is a finite number.
Case 1.3 (𝒃 = −𝟐): If 𝑏 = −2, we have 𝑐 = −10. In this case, we have ch⩽2(𝐴) = (𝑎, −2𝐻, 0).

Similarly to case 1.2, we have Im(𝑍0
𝛼,𝛽

(𝐴)) ⩾ 0 for every (𝛼, 𝛽) ∈ 𝑈. Note that Im(𝑍0
𝛼,𝛽

(𝐴)) = (2𝛽 +

𝑎(𝛽2−𝛼2)

2
)𝐻3 and 𝛼 < −𝛽, and we have 𝑎 ⩾

−4𝛽

𝛽2−𝛼2 . Then as in case 1.2, we get a contradiction.
Case 2 (𝒄 − 𝟓𝒃 = 𝟏): Now we assume that 𝑐 − 5𝑏 = 1. Then by 7.1, we have:

(1) −1 ⩽ 𝑏 ⩽ 0,
(2) 𝑏2 + 𝑎+1

5
⩾ 0.
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26 of 52 JACOVSKIS et al.

Case 2.1 (𝒃 = 𝟎): If 𝑏 = 0, then 𝑐 = 1. Therefore, −1 ⩽ 𝑎. If 𝑎 = −1, since 𝐵 is 𝜎0
𝛼,𝛽
-semistable,

we know that 0

Coh𝛽(𝑋)
(𝐵) is either 0 or supported on points. Thus, ch⩽2(

−1

Coh𝛽(𝑋)
(𝐵)) =

(0, 0, −𝐿). But Re(𝑍𝛼,𝛽(
−1

Coh𝛽(𝑋)
(𝐵))) > 0 which is impossible since−1

Coh𝛽(𝑋)
(𝐵) ∈ Coh𝛽(𝑋) with

Im(𝑍𝛼,𝛽(
−1

Coh𝛽(𝑋)
(𝐵))) = 0.

Therefore, we have 𝑎 ⩾ 0. Hence, ch⩽2(𝐵) = −(𝑎 + 1, 0, −𝐿), where 𝑎 + 1 ⩾ 1. This is also
impossible since when (𝛼, 𝛽) ∈ 𝑈 is sufficiently close to the origin, we have 𝜇0

𝛼,𝛽
(𝐵) > 𝜇0

𝛼,𝛽
(𝐹).

Case 2.2 (𝒃 = −𝟏):We have 𝑏 = −1 and 𝑐 = −4. Hence, −6 ⩽ 𝑎. In this case, ch⩽2(𝐵) = (−1 −

𝑎,𝐻, 𝐿) and we have 𝜇0
𝛼,𝛽

(𝐵) < 0 and ch
𝛽
1
(𝐵) > 0 for when (𝛼, 𝛽) ∈ 𝑈 is sufficiently close to the

origin. Thus, 𝐵 ∈ Coh𝛽(𝑋) is 𝜎𝛼,𝛽-semistable. Applying Lemma 4.6 to 𝐵, we have 𝑎 ⩾ −3.
We first prove a claim.

Claim 3. In the situation of case 2.2, we have 𝐴 is 𝜎0
𝛼,𝛽
-semistable. Hence, RHom∙(𝑋,𝐴) = 0,

ch(𝐴) = (𝑎, −𝐻, 𝐿, ( 7

3
− 𝑎)𝑃) and 𝜒(∨, 𝐴) = 3 − 2𝑎.

Assume that 𝐴 is not 𝜎0
𝛼,𝛽
-semistable for some (𝛼, 𝛽) ∈ 𝑈. Then, we can take a neighborhood

𝑈′
𝐴
of the origin such that 𝐴 has constant Harder–Narasimhan factors for any (𝛼, 𝛽) ∈ 𝑈𝐴 ∶=

𝑈 ∩ 𝑈′
𝐴

∩ 𝑉. Let 𝐶 be the minimal destabilizing quotient object of 𝐴 with respect to 𝜎0
𝛼,𝛽

for

(𝛼, 𝛽) ∈ 𝑈𝐴. In this case, we have ch⩽2(𝐴) = (𝑎, −𝐻, 𝐿). Since Im(𝑍0
0,0

(𝐴)) = 1

10
𝐻3, we know

that Im(𝑍0
0,0

(𝐶)) = 0 or 1

10
𝐻3. If Im(𝑍0

0,0
(𝐶)) = 0, then 𝜇0

0,0
(𝐶) = +∞ or −∞. But the previous

case contradicts 𝜇0
𝛼,𝛽

(𝐴) > 𝜇0
𝛼,𝛽

(𝐶) and the latter case contradicts 𝜇0
𝛼,𝛽

(𝐶) > 𝜇0
𝛼,𝛽

(𝐹). Therefore,

we have Im(𝑍0
0,0

(𝐶)) = 1

10
𝐻3 and we can assume that ch⩽2(𝐶) = (𝑒, 𝑓𝐻, 𝐿) where 𝑒, 𝑓 ∈ ℤ. Since

𝜇0
0,0

(𝐴) ⩾ 𝜇0
0,0

(𝐶) ⩾ 𝜇0
0,0

(𝐹) = 0, we have 10 ⩾ −10𝑓 ⩾ 0. If 𝑓 = 0, then ch⩽2(𝐶) = (𝑒, 0, 𝐿) and
ch⩽2(𝐷) = (𝑎 − 𝑒, −𝐻, 0), where𝐷 = cone(𝐴 → 𝐶)[−1]. Then, 𝜇0−

𝛼,𝛽
(𝐷) > 𝜇0

𝛼,𝛽
(𝐴) for any (𝛼, 𝛽) ∈

𝑈𝐴. Hence,

𝜇0
𝛼,𝛽

(𝐷) =
1 + (𝑎 − 𝑒)𝛽

𝛽 + 𝑎−𝑒

2
(𝛽2 − 𝛼2)

> 𝜇0
𝛼,𝛽

(𝐴) > 𝜇0
𝛼,𝛽

(𝐹).

But note that 𝜇0
𝛼,𝛽

(𝐷) < 0 for (𝛼, 𝛽) ∈ 𝑈𝐴 that sufficiently closed to the origin, which gives a
contradiction since 𝜇0

𝛼,𝛽
(𝐷) > 𝜇0

𝛼0,𝛽0
(𝐹) holds for any (𝛼, 𝛽) ∈ 𝑈𝐴.

Therefore, the only possible case is 𝑓 = −1, and hence 𝜇0
0,0

(𝐶) = 10. Since 𝜇0
𝛼,𝛽

(𝐴) > 𝜇0
𝛼,𝛽

(𝐶)

for (𝛼, 𝛽) ∈ 𝑈𝐴, we have rk 𝐶 > 𝑎. But this is impossible since 𝐷,𝑋 ∈ Coh0
𝛼,𝛽

(𝑋) but ch⩽2(𝐷) =

(𝑠, 0, 0) = 𝑠 ⋅ ch⩽2(𝑋)where 𝑠 = 𝑎 − rk𝐶 < 0. Now for the last statement, note that𝑋(−𝐻)[2] ∈

Coh0
𝛼,𝛽

(𝑋) is 𝜎0
𝛼,𝛽
-semistable with 𝜇0

0,0
(𝑋(−𝐻)[2]) = 2, hence we have Hom(𝐴,𝑋(−𝐻)[2]) =

Hom(𝑋,𝐴[1]) = 0. Now combined with Claim 1, this proves our claim.
Now we deal with the three cases 𝑎 = −3, −2 ⩽ 𝑎 ⩽ 1 and 𝑎 ⩾ 2 separately.
When 𝑎 = −3, we have ch⩽2(𝐵) = ch⩽2(

∨). Then since ch⩽2(𝐵) is on the boundary of
Lemma 4.6, by a standard argument, we know that 𝐵 is 𝜎𝛼,𝛽-semistable for every 𝛼 > 0 and 𝛽 < 0,
as explained in [48, Proposition 3.2]. Thus, by Lemma 4.5, 𝐵 is a 𝜇-semistable sheaf. From Claim
3, we have 𝜒(𝑋, 𝐵) = 0, hence ch(𝐵) = ch(∨), and by Lemma 7.7, we have 𝐵 ≅ ∨. But this
implies Hom(𝑋,𝐴[1]) = 𝑘5 since 𝐹 ∈ 𝑋 , which contradicts Claim 3.
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When −2 ⩽ 𝑎 ⩽ 1, we have 𝜇0
𝛼,𝛽

(𝐴) > 𝜇0
𝛼,𝛽

([2]). Since 𝐴 is 𝜎0
𝛼,𝛽
-semistable, we have

Hom(𝐴, [2]) = Hom(∨, 𝐴[1]) = 0. Thus, RHom∙(∨, 𝐴) = 0 by Claim 2. But this contradicts
Claim 3 since 𝜒(∨, 𝐴) = 3 − 2𝑎.
When 𝑎 ⩾ 2, applying Theorem 4.7 to 𝐵, we have 𝑎 = 2. Thus, ch⩽2(𝐵) = ch⩽2(

∨[1]). By
Claim 3, we know that RHom∙(𝑋, 𝐵) = 0 and we get ch(𝐵) = ch(∨[1]). Thus, 𝜒(∨, 𝐵) =

hom(∨, 𝐵) > 0. Therefore, if we applyHom(−, 𝐵) to the exact sequence 0 → ∨ → ⊕5
𝑋

→ ∨ →

0, we obtain hom(∨[1], 𝐵) > 0. Now by stability, we have 𝐵 ≅ ∨[1]. Now ch(𝐴) = ch([2]). By
Claim 2 and Claim 3, we have ext1(∨, 𝐴) = hom(𝐴, [2]) = 1. Since 𝐴 is 𝜎0

𝛼,𝛽
-semistable and

[2] is 𝜎0
𝛼,𝛽
-stable, we have 𝐴 ≅ [2]. □

Proposition 7.11. Let 𝑋 be a GM threefold. Then every object in the moduli space𝜎(𝑋, −𝑥) is
of form pr(𝐼𝐶)[1] for a conic 𝐶 ⊂ 𝑋.

Proof. Note that hom(∨[1], [2]) = 1. Then the result follows from Proposition 7.9 and
Proposition 7.10. □

Nowwe are ready to realize theBridgelandmoduli space𝜎(𝑋, −𝑥) as the contraction𝑚(𝑋)

of the Fano surface (𝑋):

Theorem 7.12. Let𝑋 be a GM threefold and 𝜎 a Serre-invariant stability condition on𝑋 . The pro-
jection functor pr∶ D𝑏(𝑋) → 𝑋 induces a surjective morphism 𝑝∶ (𝑋) → 𝜎(𝑋, −𝑥), where
𝑝 is

∙ a blow-down morphism to a smooth point when 𝑋 is ordinary;
∙ a contraction of the component ℙ2 to a singular point when 𝑋 is special.

In particular, when 𝑋 is general and ordinary,𝜎(𝑋, −𝑥) is isomorphic to the minimal model
𝑚(𝑋) of the Fano surface of conics on 𝑋. When 𝑋 is general and special, the moduli space
𝜎(𝑋, −𝑥) has only one singular point.

Proof. By Lemmas 7.4 and 7.6, pr(𝐼𝐶)[1] is 𝜎-stable for any conic 𝐶 ⊂ 𝑋. Then we obtain a
morphism 𝑝∶ (𝑋) → 𝜎(𝑋, −𝑥). Moreover, Proposition 7.11 implies that 𝑝 is surjective.
Now according to Proposition 7.1, the family of conics 𝐶 ⊂ 𝑋 with the property that 𝐼𝐶 ∉ 𝑋 is

parametrized by the line 𝐿𝜎 when 𝑋 is ordinary, and the component ℙ2 when 𝑋 is special. Since
pr(𝐼𝐶)[1] ≅ 𝜋′(∨)[1] for 𝐼𝐶 ∉ 𝑋 by Proposition 7.2, we know that 𝑝(𝐿𝜎) = [𝜋′(∨)[1]]when 𝑋

is ordinary, and 𝑝(ℙ2) = [𝜋′(∨)[1]] when 𝑋 is special, where [𝜋′(∨)[1]] ∈ 𝜎(𝑋, −𝑥) is the
point represented by the object 𝜋′(∨)[1]. Thus, 𝑝 is a blow-down morphism to a smooth point
when 𝑋 is ordinary and a contraction of the component ℙ2 to a singular point when 𝑋 is special
by Lemma 5.6.
When 𝑋 is general and ordinary, the Fano surface (𝑋) is smooth by Theorem 6.4. Thus,

𝜎(𝑋, −𝑥) is a smooth surface obtained by blowing down a smooth rational curve 𝐿𝜎 on the
smooth irreducible projective surface (𝑋). This implies that𝜎(𝑋, −𝑥) is also a smooth irre-
ducible projective surface. On the other hand, it is known that there is a unique rational curve
𝐿𝜎 ⊂ (𝑋) and it is the unique exceptional curve by Lemma 6.5. Thus,𝜎(𝑋, −𝑥) is isomorphic
to the minimal model 𝑚(𝑋) of Fano surface of conics on 𝑋.
When 𝑋 is general and special, the last statement follows from Theorem 6.11 and

Lemma 7.3. □
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28 of 52 JACOVSKIS et al.

7.2 Involutions on 𝒎(𝑿)

In this section, we are going to describe the involution 𝜄 on 𝑚(𝑋) in Theorem 6.6, described in [13,
Section 5.2] using the involution on𝑋 . Recall that there is a natural involutive autoequivalence
functor of 𝑋 , denoted by 𝜏 (cf. Remark 3.2). When 𝑋 is special, it is induced by the natural
involution 𝜏 on 𝑋, which comes from the double cover 𝑋 → 𝑌. In this case, it is easy to see that
𝜏(pr(𝐼𝐶)) ≅ pr(𝐼𝜏(𝐶)).
When 𝑋 is ordinary, the situation is more subtle. In the following, we describe the action of 𝜏

on the projection into 𝑋 of an ideal sheaf of a conic pr(𝐼𝐶) in this case, and compare with the
involution 𝜄 on 𝑚(𝑋) described in [13, Section 5.2].

Proposition 7.13. Let 𝑋 be an ordinary GM threefold and 𝐶 a conic on 𝑋.

(1) If 𝐼𝐶 ∈ 𝑋 , then ∬(𝐼𝐶) is either
(a) 𝐼𝐶′ such that 𝐶 ∪ 𝐶′ = 𝑍(𝑠) for 𝑠 ∈ 𝐻0(∨), where 𝑍(𝑠) is the zero locus of the section 𝑠;
(b) or 𝜋′(∨), and in this case 𝐶 is the 𝜌-conic

(2) If 𝐼𝐶 ∉ 𝑋 , then 𝜏(pr(𝐼𝐶)) ≅ 𝐼𝐶′′ for the 𝜌-conic 𝐶′′ ⊂ 𝑋.

Therefore, the involution induced by 𝜏 on 𝑚(𝑋) is the same as 𝜄 in Theorem 6.6.

Remark 7.14. We can define a birational involution on (𝑋) for any GM threefold 𝑋 as in
Proposition 7.13 (1)(a), which is regular on the locus of conics 𝐶 with hom( , 𝐼𝐶) = 1.

We first state some lemmas which we require for the proof of the proposition above.

Lemma 7.15. Let 𝑋 be an ordinary GM threefold and 𝐶 be the 𝜌-conic on 𝑋. Then the natural
morphism 𝑠′ ∶ ⊕2 → 𝐼𝐶 is surjective and there is a short exact sequence

0 → (−𝐻) → ⊕2 𝑠′

nn→ 𝐼𝐶 → 0.

Proof. By Lemma 6.3, we haveHom( , 𝐼𝐶) = 𝑘2. Thus, taking two linearly independent elements
in Hom( , 𝐼𝐶), we have a natural map 𝑠′ ∶ ⊕2 → 𝐼𝐶 . Moreover, since ⟨𝐶⟩ = Gr(2, 3) and ⟨𝐶⟩ ∩

𝑋 = 𝐶, we know that 𝑠′ is surjective. Let 𝐾 ∶= ker(𝑠′). Then, it is not hard to see that ch(𝐾) =

ch((−𝐻)). Note that Hom( , 𝐾) = 0 and 𝐾 is reflexive.
We claim that𝐾 is𝜇-semistable. Indeed, suppose𝐾 is not𝜇-semistable and let𝐾′ be itsmaximal

destabilizing subsheaf. Then 𝐾′ is also reflexive. Since Hom( , 𝐾) = 0, we have 𝐾′ ≠  . By the
stability of  and the fact that 𝐾 ⊂ ⊕2, we know that 𝜇(𝐾′) = −1

2
. Since Hom(𝐾′, ) ≠ 0, by

the stability of 𝐾′ and  , we have 𝐾′ ⊂  . Thus, from ch⩽1(𝐾
′) = ch⩽1(), we know that ∕𝐾′ is

supported in codimension ⩾ 2, which gives a contradiction since  and 𝐾′ are both reflexive.
Now the result follows from Lemma 7.8, since 𝐾(𝐻) is 𝜇-semistable with ch(𝐾(𝐻)) =

ch(). □

Lemma 7.16. Let 𝑋 be an ordinary GM threefold. Let 𝐶 be a conic on 𝑋. Then

𝐋 (𝐼𝐶) =

{
𝔻(𝐼𝐶′) ⊗ 𝑋(−𝐻)[1], RHom∙( , 𝐼𝐶) = 𝑘

𝜋(), RHom∙( , 𝐼𝐶) = 𝑘2 ⊕ 𝑘[−1]

such that 𝐶 ∪ 𝐶′ = 𝑍(𝑠) for 𝑠 ∈ 𝐻0(∨), where 𝑍(𝑠) is the zero locus of the section 𝑠
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CATEGORICAL TORELLI FOR GM THREEFOLDS 29 of 52

Proof. By Lemma 6.3, we have that RHom∙( , 𝐼𝐶) is either 𝑘 or 𝑘2 ⊕ 𝑘[−1]. If RHom∙( , 𝐼𝐶) = 𝑘,
then we have the triangle

 → 𝐼𝐶 → 𝐋 (𝐼𝐶).

Taking cohomology with respect to the standard heart, we get

0 → −1(𝐋 (𝐼𝐶)) → 
𝑠
n→ 𝐼𝐶 → 0(𝐋 (𝐼𝐶)) → 0.

The image of the map 𝑠 is the ideal sheaf of an elliptic quartic 𝐷 = 𝑍(𝑠) for 𝑠 ∈ 𝐻0(∨); thus, we
have following two short exact sequences: 0 → −1(𝐋 (𝐼𝐶)) →  → 𝐼𝐷 → 0 and 0 → 𝐼𝐷 → 𝐼𝐶 →

0(𝐋 (𝐼𝐶)) → 0. Then−1(𝐋 (𝐼𝐶)) is a torsion-free sheaf of rank 1with the sameChern character
as𝑋(−𝐻). It is easy to show that itmust be𝑋(−𝐻). On the other hand,0(𝐋 (𝐼𝐶)) is supported
on the residual curve 𝐶′ of 𝐶 in 𝐷 and0(𝐋 (𝐼𝐶)) ≅ 𝐶′(−𝐻). Thus, we have the triangle

𝑋(−𝐻)[1] → 𝐋 (𝐼𝐶) → 𝐶′(−𝐻),

and we observe that 𝐋 (𝐼𝐶) is exactly the twisted derived dual of the ideal sheaf 𝐼𝐶′ of a conic
𝐶′ ⊂ 𝑋, that is, 𝐋 (𝐼𝐶) ≅ 𝔻(𝐼𝐶′) ⊗ 𝑋(−𝐻)[1].
If RHom∙( , 𝐼𝐶) = 𝑘2 ⊕ 𝑘[−1], then we have the triangle

2 ⊕ [−1] → 𝐼𝐶 → 𝐋 (𝐼𝐶).

Taking the long exact sequence in cohomology with respect to the standard heart, we get

0 → −1(𝐋 (𝐼𝐶)) → 2 𝑠′

nn→ 𝐼𝐶 → 0(𝐋 (𝐼𝐶)) →  → 0.

Now by Lemma 7.15, 𝑠′ is surjective and the cohomology objects are given by −1(𝐋 (𝐼𝐶)) ≅

(−𝐻) and0(𝐋 (𝐼𝐶)) ≅  , which implies that 𝐋 (𝐼𝐶) ≅ 𝜋(). □

Proof of Proposition 7.13. Since 𝜏◦𝜏 ≅ id, we have 𝜏 ≅ 𝜏−1

. By Proposition 2.6, we have 𝜏 ≅

𝜏−1


≅ 𝐋𝑋
◦𝐋∨(− ⊗ 𝑋(𝐻))[−1]. Then

𝜏(𝐼𝐶) ≅ 𝐋𝑋
◦𝐋∨(𝐼𝐶 ⊗ 𝑋(𝐻))[−1]

≅ 𝐋𝑋
(𝐋 (𝐼𝐶) ⊗ 𝑋(𝐻))[−1].

The left mutation 𝐋 (𝐼𝐶) is given by

RHom∙( , 𝐼𝐶) ⊗  → 𝐼𝐶 → 𝐋 (𝐼𝐶).

Note that by Lemma 6.3, RHom∙( , 𝐼𝐶) is either 𝑘 or 𝑘2 ⊕ 𝑘[−1], and in the latter case, 𝐶 is the
unique 𝜌-conic. Then, by Lemma 7.16,

𝐋 (𝐼𝐶) =

{
𝔻(𝐼𝐶′) ⊗ 𝑋(−𝐻)[1], RHom∙( , 𝐼𝐶) = 𝑘

𝜋(), RHom∙( , 𝐼𝐶) = 𝑘2 ⊕ 𝑘[−1].
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30 of 52 JACOVSKIS et al.

If RHom∙( , 𝐼𝐶) = 𝑘, then 𝜏(𝐼𝐶) ≅ 𝐋𝑋
(𝔻(𝐼𝐶′)). We have the triangle

RHom∙(𝑋, 𝔻(𝐼𝐶′)) ⊗ 𝑋 → 𝔻(𝐼𝐶′) → 𝐋𝑋
(𝔻(𝐼𝐶′)).

Note that RHom∙(𝑋, 𝔻(𝐼𝐶′)) ≅ RHom∙(𝐼𝐶′ ,𝑋) = 𝑘 ⊕ 𝑘[−1]. Then we have the triangle

𝑋 ⊕ 𝑋[−1] → 𝔻(𝐼𝐶′) → 𝐋𝑋
(𝔻(𝐼𝐶′)). (4)

The derived dual𝔻(𝐼𝐶′) is given by the triangle𝑋 → 𝔻(𝐼𝐶′) → 𝐶′[−1]. Then taking cohomology
with respect to the standard heart of triangle (4), we have the long exact sequence

0 = −1(𝔻(𝐼𝐶′)) → −1(𝐋𝑋
(𝔻(𝐼𝐶′))) → 𝑋 → 𝑋

→ 0(𝐋𝑋
(𝔻(𝐼𝐶′))) → 𝑋 → 𝐶′ → 1(𝐋𝑋

(𝔻(𝐼𝐶′))) → 0.

Thus, we have −1(𝐋𝑋
(𝔻(𝐼𝐶′))) = 0, 1(𝐋𝑋

(𝔻(𝐼𝐶′))) = 0 and 0(𝐋𝑋
(𝔻(𝐼𝐶′))) ≅ 𝐼𝐶′ . Hence,

𝜏(𝐼𝐶) ≅ 𝐋𝑋
(𝔻(𝐼𝐶′)) ≅ 𝐼𝐶′ .

If RHom∙( , 𝐼𝐶) = 𝑘2 ⊕ 𝑘[−1], then 𝜏(𝐼𝐶) ≅ 𝐋𝑋
◦𝐋∨(𝐼𝐶 ⊗ 𝑋(𝐻))[−1] ≅ 𝐋𝑋

(𝜋() ⊗

𝑋(𝐻)[−1]) by Lemma 7.16. Then using the triangle (2), we have 𝜏(𝐼𝐶) ≅ 𝜋′(∨). Then, (2)
follows from 𝜏 ≅ 𝜏−1


.

Now since 𝜏 = 𝑆𝑋
[−2] and 𝜏 acts trivially on  (𝑋), it induces an involution on the

Bridgeland moduli space of any class with respect to any Serre-invariant stability condition. In
particular, 𝜏 induces an involution on 𝑚(𝑋) ≅ 𝜎(𝑋, −𝑥) by Theorem 7.12. By (1) and (2),
this induced involution coincides with 𝜄 in Theorem 6.6, described in [13, Section 5.2]. □

Remark 7.17. Smooth 𝜏-conics formanopen subscheme𝑈 of(𝑋). Therefore, the open subscheme
𝑈 ∩ 𝜄(𝑈) parameterizes smooth 𝜏-conics𝐶 such that their involutive conics in Proposition 7.13 are
smooth as well. The same also works for special GM threefolds, but replace 𝜏-conics with conics
with hom( , 𝐼𝐶) = 1 and 𝐼𝐶 ∈ 𝑋 , which are parametrized by (𝑋) ⧵ ℙ2. In other words, for any
GM threefold 𝑋, there is a two-dimensional open subscheme 1 ⊂ (𝑋) parameterizing smooth
conics 𝐶 with hom( , 𝐼𝐶) = 1 such that their involutive conics are smooth.

8 THEMODULI SPACE𝑴𝑮(𝟐, 𝟏, 𝟓) FOR GM THREEFOLDS

In this section, we investigate the moduli space of rank 2 Gieseker-semistable sheaves on a GM
threefold 𝑋 with Chern classes 𝑐1 = 𝐻, 𝑐2 = 5𝐿, and 𝑐3 = 0, denoted as 𝑀𝑋

𝐺
(2, 1, 5). We drop 𝑋

from the notation when it is clear from context on which threefold we work. Note that if 𝐹 ∈

𝑀𝐺(2, 1, 5), then

ch(𝐹) =
(
2,𝐻, 0, −

5

6
𝑃
)

.

We are interested in𝑀𝐺(2, 1, 5) since it naturally appears in the description of the period fiber
in [13]. Our main theorem in Section is Theorem 8.9, which realizes𝑀𝐺(2, 1, 5) as the Bridgeland
moduli space𝜎(𝑋, 𝑦 − 2𝑥).
First, we prove a classification result of sheaves in𝑀𝐺(2, 1, 5).

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CATEGORICAL TORELLI FOR GM THREEFOLDS 31 of 52

Proposition 8.1. Let𝑋 be aGM threefold and𝐹 ∈ 𝑀𝐺(2, 1, 5). Then, we haveRHom∙(𝑋, 𝐹) = 𝑘4

and RHom∙(𝑋, 𝐹(−𝐻)) = 0. Moreover, 𝐹 is either a

(1) globally generated bundle that fits into a short exact sequence

0 → 𝑋 → 𝐹 → 𝐼𝑍(𝐻) → 0

where 𝑍 is a projective normal smooth elliptic quintic curve;
(2) nonlocally free sheaf with a short exact sequence

0 → 𝐹 → ∨ → 𝐿 → 0

where 𝐿 is a line on 𝑋. Moreover, 𝐹 is uniquely determined by 𝐿.

Remark 8.2. In [13, Section 8], they also did computations for nonglobally generated bundles in
𝑀𝑋

𝐺
(2, 1, 5). However, in the following proof, we will show such sheaves do not exist.

Proof. The first statement follows from [11, Proposition 3.5 (1)] and the fact 𝜒(𝐹) = 4. (1) and
(2) also follow from [11, Proposition 3.5] or the argument in [13, Section 8]. So, we only need to
prove the nonexistence of nonglobally generated bundles in 𝑀𝑋

𝐺
(2, 1, 5). If 𝐹 ∈ 𝑀𝑋

𝐺
(2, 1, 5) is a

nonglobally generated bundle, then as showed in [13, Section 8], we have an exact sequence

0 → 𝐹∨ → ⊕4
𝑋

→ ∨ 𝑎
n→ 𝐿 → 0.

By (2), we know that 𝐸 ∶= ker(𝑎) is a nonlocally free stable sheaf and 𝐸 ∈ 𝑀𝑋
𝐺
(2, 1, 5). Thus, we

have an exact sequence 0 → 𝐹∨ → ⊕4
𝑋

→ 𝐸 → 0. In particular, 𝐸 is generated by global sections.
However, we also have the following commutative diagram of exact sequences:

where ev ∶ ⊕4
𝑋

→ 𝐸 is the evaluation map. Then, using Snake Lemma, we have an exact
sequence

0 → ker(ev) → ∨ 𝑠
n→ 𝐼𝐿 → cok(ev) → 0.

As shown in Lemma 6.3 and Proposition 7.1, the image of 𝑠 is the zero locus of a nonzero section of
. It is a 𝜎-conic when 𝑋 is ordinary, and a preimage of a line on 𝑌 when 𝑋 is special. Hence, in
both cases, im(𝑠) is an ideal sheaf of a conic, and 𝑠 is not surjective. Therefore, ev is not surjective
as well and we get a contradiction. □

A natural question to ask is what Bridgeland moduli space we get after projecting a sheaf in
𝑀𝐺(2, 1, 5) into the Kuznetsov component. Since it is easier in this setting, we will work with the
alternative Kuznetsov component𝑋 in this section. Our analysis of the projections of objects in
𝑀𝐺(2, 1, 5) is based on the three cases listed in Proposition 8.1. We begin with a Hom-vanishing
result.
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32 of 52 JACOVSKIS et al.

Lemma 8.3. Let 𝑋 be a GM threefold and 𝐹 ∈ 𝑀𝑋
𝐺
(2, 1, 5). Then, we have RHom∙(∨, 𝐹) = 0.

Proof. By Serre duality and the stability of ∨ and 𝐹, we have Hom(∨, 𝐹) = Ext3(∨, 𝐹) = 0.
Since 𝜒(∨, 𝐹) = 0, we only need to show that Ext2(∨, 𝐹) = 0 or Ext2(∨, 𝐹) = 0. By Serre
duality, we have Ext2(∨, 𝐹) = Hom(𝐹, [1]). Since ch0

1(𝐹) = ch0
1([1]) = 1, by Lemma 4.5, we

know that 𝐹 and [1] are both 𝜎𝛼,0-stable for any 𝛼 > 0. Then Hom(𝐹, [1]) = 0 since 𝜇𝛼,0(𝐹) >

𝜇𝛼,0([1]) when 0 < 𝛼 is sufficiently small. □

We are now ready to give an explicit description of pr(𝐹), for all objects 𝐹 ∈ 𝑀𝐺(2, 1, 5). Recall
that for any line 𝐿 ⊂ 𝑋, we have |𝐿 ≅ ⊕2

𝐿
⊕ 𝐿(1). Hence, 𝐿 is contained in a unique 𝜎-conic

𝐶. We define the residue line of 𝐿 to be the support of𝐶 ↠ 𝐿. Note that when 𝐶 is a double line,
we have 𝐿′ = 𝐿.

Lemma 8.4. Let 𝑋 be a GM threefold and 𝐹 ∈ 𝑀𝐺(2, 1, 5).

∙ If 𝐹 is a globally generated bundle, then

pr(𝐹) ≅ ker(ev)[1],

where ev ∶ ⊕4
𝑋

↠ 𝐹 is the evaluation map.
∙ If 𝐹 is a nonlocally free sheaf determined by a line 𝐿 ⊂ 𝑋, then pr(𝐹) is the unique object fits into
a nontrivial exact triangle

[1] → pr(𝐹) → 𝐿′(−1),

where 𝐿′ is the residue line of 𝐿.

Proof. As a result of Lemma 8.3, 𝐋∨𝐹 = 𝐹, so pr(𝐹) = 𝐋𝑋
𝐹. By Proposition 8.1, we have

RHom∙(𝑋, 𝐹) = 𝑘4, and the triangle defining the left mutation is

⊕4
𝑋

ev
nn→ 𝐹 → pr(𝐹). (5)

In the cases where 𝐹 is globally generated, the evaluation map ev is surjective, so pr(𝐹) =

ker(ev)[1].
When 𝐹 is nonlocally free, as in Proposition 8.1, we have an exact sequence

0 → ker(ev) → ∨ 𝑠
n→ 𝐼𝐿 → cok(ev) → 0.

As shown in Lemma 6.3 and Proposition 7.1, the image of 𝑠 is the zero locus of a
nonzero section of , which is a 𝜎-conic. Hence, by Proposition 7.1, we obtain ker(ev) =

 and cok(ev) = 𝐿′(−1). Since pr(𝐹) ∈ 𝑋 , by Serre duality, we have RHom∙(∨, pr(𝐹)) =

RHom∙(pr(𝐹), )∨[−3] = 0, which implies that such triangle is nontrivial. And the uniqueness
follows from Ext2(𝐿′(−1), ) = 𝐻1((−1)|𝐿) = 𝑘. □

8.1 Stability of projection objects

In the following, we prove the stability of pr(𝐹) for any 𝐹 ∈ 𝑀𝑋
𝐺
(2, 1, 5).
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CATEGORICAL TORELLI FOR GM THREEFOLDS 33 of 52

Lemma 8.5. The functor pr∶ D𝑏(𝑋) → 𝑋 induces isomorphisms of Ext𝑘(pr(𝐹1), pr(𝐹2)) and
Ext𝑘(𝐹1, 𝐹2) for all 𝑘 and for all 𝐹1, 𝐹2 ∈ 𝑀𝐺(2, 1, 5).

Proof. We apply Hom(𝐹1, −) to the exact triangle ⊕4
𝑋

→ 𝐹2 → pr(𝐹2). By adjunction of pr and
the inclusion 𝑋 ↪ D𝑏(𝑋), we have Ext𝑘(𝐹1, pr(𝐹2)) = Ext𝑘(pr(𝐹1), pr(𝐹2)) for all 𝑘. Thus, we
get a long exact sequence

⋯ → Ext𝑘(𝐹1,𝑋)⊕4 → Ext𝑘(𝐹1, 𝐹2) → Ext𝑘(pr(𝐹1), pr(𝐹2)) → Ext𝑘+1(𝐹1,𝑋)⊕4 → ⋯ .

Note that Ext𝑘(𝐹1,𝑋) = Ext3−𝑘(𝑋, 𝐹1(−𝐻)) = 0 for all 𝑘 by Proposition 8.1. Thus, the desired
result follows. □

Before we show the stability of projection objects, let us recall a classical result:

Proposition 8.6. Let𝑋 be an ordinary GM threefold and 𝐿 ⊂ 𝑋 be a line. Then RHom∙(𝐿,𝐿) =

𝑘 ⊕ 𝑘[−1] or 𝑘 ⊕ 𝑘2[−1] ⊕ 𝑘[−2]. Moreover, when𝑋 is general, we always haveRHom∙(𝐿,𝐿) =

𝑘 ⊕ 𝑘[−1].

Proof. The first statement follows from [46, Lemma 4.2.1] and the second one follows from [46,
Theorem 4.2.7]. □

Now we are ready to prove the stability of pr(𝐹).

Proposition 8.7. Let𝑋 be aGM threefold and𝐹 ∈ 𝑀𝑋
𝐺
(2, 1, 5). Then, we haveRHom∙(𝐹, 𝐹) = 𝑘 ⊕

𝑘2[−1] or RHom∙(𝐹, 𝐹) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2]. Hence, pr(𝐹) is stable with respect to every Serre-
invariant stability condition on𝑋 .
Moreover,

(1) when 𝑋 is ordinary, if RHom∙(𝐹, 𝐹) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2], then 𝐹 is a nonglobally generated
bundle or a nonlocally free sheaf determined by a line 𝐿, and [𝐿] ∈ Γ(𝑋) is a singular point. In
particular, we always have RHom∙(𝐹, 𝐹) = 𝑘 ⊕ 𝑘2[−1] when 𝑋 is general;

(2) when 𝑋 is special, RHom∙(𝐹, 𝐹) = 𝑘 ⊕ 𝑘3[−1] ⊕ 𝑘[−2] if and only if 𝜏∗𝐹 ≅ 𝐹, where 𝜏 is the
natural involution on 𝑋.

Proof. First, we assume that 𝑋 is ordinary. We have hom(𝐹, 𝐹) = 1 and ext3(𝐹, 𝐹) = 0 by Serre
duality and the stability of 𝐹. Since 𝜒(𝐹, 𝐹) = −1, we need to prove ext2(𝐹, 𝐹) = 0 or 1.
When𝐹 is a globally generated bundle, by the proof of [13, Theorem 8.2], we have ext1(𝐹, 𝐹) = 2

and ext2(𝐹, 𝐹) = 0.When𝐹 is nonlocally free, there is amistakemade in the proof of [13, Theorem
8.2] and we fix it here. From Proposition 8.1, we have an exact sequence 0 → 𝐹 → ∨ → 𝐿 →

0. Since RHom∙(∨, 𝐹) = 0 by Lemma 8.3, applying Hom(−, 𝐹) to this exact sequence, we get
Ext𝑘(𝐹, 𝐹) = Ext𝑘+1(𝐿, 𝐹) for any 𝑘. Now applyingHom(𝐿, −) to this exact sequence, we get a
long exact sequence

⋯ → Ext2(𝐿,𝐿) → Ext3(𝐿, 𝐹) → Ext3(𝐿, 
∨) → 0.

By Serre duality, we have Ext3(𝐿, 
∨) = 𝐻0((−1)|𝐿) = 0. Then, from Proposition 8.6, we have

ext2(𝐹, 𝐹) = ext3(𝐿, 𝐹) ⩽ ext2(𝐿,𝐿) ⩽ 1. Moreover, if ext2(𝐹, 𝐹) = 1, then ext2(𝐿,𝐿) = 1.
In other words, [𝐿] ∈ Σ(𝑋) is a singular point. This proves (1).
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34 of 52 JACOVSKIS et al.

Now we assume that 𝑋 is special. Then, by Lemma 8.5 and Serre duality in𝑢(𝑋), we have

Ext2(𝐹, 𝐹) ≅ Ext2(pr(𝐹), pr(𝐹))

≅ Hom(pr(𝐹), 𝜏(pr(𝐹)))

≅ Hom(pr(𝐹), pr(𝜏∗𝐹)) ≅ Hom(𝐹, 𝜏∗𝐹),

where 𝜏 is the involution on 𝑋 induced by the double cover. Thus, when 𝐹 ≅ 𝜏∗𝐹, we have
Ext2(𝐹, 𝐹) = 𝑘, andExt2(𝐹, 𝐹) = 0 otherwise. SinceExt3(𝐹, 𝐹) = 0 andHom(𝐹, 𝐹) = 𝑘, the result
follows from 𝜒(𝐹, 𝐹) = −1.
Finally, the stability of pr(𝐹) follows from Lemma 8.5 and Proposition 4.12. □

8.2 Involutions on𝑴𝑮(𝟐, 𝟏, 𝟓)

In this subsection, we briefly recall the involutions that exist on 𝑀𝐺(2, 1, 5) and compare it with
the one induced by 𝜏. Let 𝐹 be a globally generated vector bundle, and consider the short exact
sequence

0 → ker(ev) → 𝐻0(𝑋, 𝐹) ⊗ 𝑋

ev
nn→ 𝐹 → 0.

Note that ker(ev) is a rank 2 vector bundle with 𝑐1 = −𝐻 and 𝑐2 = 5𝐿 and no global
sections, hence ker(ev)∨ ∈ 𝑀𝐺(2, 1, 5). Define 𝜄𝐹 ∶= ker(ev)∨. This bundle 𝜄𝐹 is globally gen-
erated, and we have 𝐻0(𝑋, 𝜄𝐹) ≅ 𝐻0(𝑋, 𝐹)∨ [13, p. 29]. This defines a birational involution
on𝑀𝑋

𝐺
(2, 1, 5).

Note that there is no nonglobally generated bundle in 𝑀𝑋
𝐺
(2, 1, 5) by Proposition 8.1, then

the definition of 𝜄 on the nonlocally free locus in [13, Theorem 8.2] does not work. How-
ever, we can fix this issue as follows: for any nonlocally free 𝐹 ∈ 𝑀𝑋

𝐺
(2, 1, 5) determined

by a line 𝐿, we define 𝜄(𝐹) ∶= 𝐹′, where 𝐹′ ∶= ker(∨ ↠ 𝐿′) is a nonlocally free stable
sheaf determined by the residue line 𝐿′ of 𝐿. This extends 𝜄 to be a regular involution on
𝑀𝑋

𝐺
(2, 1, 5).
Note that for a special GM threefold, there is another involution on𝑀𝐺(2, 1, 5) induced by the

involution 𝜏 on 𝑋,

𝜏∗ ∶ 𝑀𝐺(2, 1, 5) → 𝑀𝐺(2, 1, 5), 𝐹 ↦ 𝜏∗𝐹.

And it is clear that 𝜏(pr(𝐹)) ≅ pr(𝜏∗𝐹).
Now let 𝑋 be an ordinary GM threefold, 𝜏 be the involution of 𝑋 , and 𝜄 be the geo-

metric involution of 𝑀𝐺(2, 1, 5) defined above. Then 𝜏 induces involutions of the Bridgeland
moduli spaces of 𝜎-stable objects 𝜎(𝑋, −𝑥) and 𝜎(𝑋, 𝑦 − 2𝑥). In Proposition 7.13, we
already showed that the action of 𝜏 on 𝜎(𝑋, −𝑥) induces a geometric involution on
𝑚(𝑋). In this section, we show that the involution induced by 𝜏 is also compatible with 𝜄 on
𝑀𝐺(2, 1, 5).

Proposition 8.8. Let 𝑋 be an ordinary GM threefold and 𝐹 ∈ 𝑀𝑋
𝐺
(2, 1, 5). Then 𝜏pr(𝐹) ≅

pr(𝜄(𝐹)).
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CATEGORICAL TORELLI FOR GM THREEFOLDS 35 of 52

Proof.

(1) If𝐹 is a nonlocally free sheaf determined by a line 𝐿, then by Lemma 8.4, we have the triangle

[1] → pr(𝐹) → 𝐿′(−1).

Then since 𝜏 ≅ 𝜏−1


≅ 𝐋𝑋
◦𝐋∨(− ⊗ 𝑋(𝐻))[−1], 𝜏(pr(𝐹)) is given by a triangle

𝐋𝑋
𝐋∨(∨) → 𝜏(pr(𝐹)) → 𝐋𝑋

𝐋∨(𝐿′)[−1].

Note that 𝐋∨(∨) = 0, hence 𝜏𝐴(pr(𝐹)) ≅ 𝐋𝑋
𝐋∨(𝐿′)[−1]. It is easy to see

RHom∙(∨,𝐿′) = 𝑘; therefore, we have ∨ → 𝐿′ → 𝐋∨𝐿′ . Also, since ∨ → 𝐿′ is
surjective, we have 𝐋∨𝐿′ ≅ 𝐹′[1], where 𝐹′ ∶= ker(∨ → 𝐿′) is a nonlocally free sheaf
in 𝑀𝐺(2, 1, 5) determined by 𝐿′ as in Proposition 8.1. Thus, 𝜏(pr(𝐹)) ≅ 𝐋𝑋

𝐹′ ≅ pr(𝐹′) =

pr(𝜄(𝐹)).
(2) If 𝐹 is a globally generated vector bundle, consider the standard short exact sequence

0 → ker(ev) → 𝐻0(𝑋, 𝐹) ⊗ 𝑋

ev
nn→ 𝐹 → 0.

Dualizing the sequence and applying pr, we get the triangle

pr(𝐹∨) → pr(⊕4
𝑋

) → pr(ker(ev)∨) ≅ pr(𝜄𝐹).

Note that 𝐹∨ ∈ 𝑋 and pr(𝑋) = 0, thus we get pr(𝜄𝐹) ≅ 𝐹∨[1]. Since 𝐹 ∈ 𝑀𝐺(2, 1, 5) is a
globally generated vector bundle, we have𝐹 ≅ 𝜄𝐸 for some globally generated vector bundle𝐸.
Then pr(𝐹) = pr(𝜄𝐸) ≅ 𝐸∨[1] ≅ 𝐸 ⊗ 𝑋(−𝐻)[1], hence 𝜏(pr(𝐹)) ≅ 𝜏(𝐸 ⊗ 𝑋(−𝐻))[1] ≅

pr(𝐸) ≅ pr(𝜄𝐹).

□

8.3 The Bridgeland moduli space of class 𝒚 − 𝟐𝒙

In this subsection, we show that𝑀𝐺(2, 1, 5) ≅ 𝜎(𝑋, 𝑦 − 2𝑥).

Theorem 8.9. Let 𝑋 be a GM threefold and 𝜎 be a Serre-invariant stability condition on𝑋 . Then
the projection functor pr∶ D𝑏(𝑋) → 𝑋 induces an isomorphism𝑀𝑋

𝐺
(2, 1, 5) ≅ 𝜎(𝑋, 𝑦 − 2𝑥).

We split the proof of this theorem into a series of lemmas and propositions. Recall that in 4.9,
we defined

𝑉 ∶= {(𝛼, 𝛽)∶ −
1

10
< 𝛽 < 0, 0 < 𝛼 < −𝛽}.

Proposition 8.10. Let 𝐹 ∈ (𝛼, 𝛽) be a 𝜎(𝛼, 𝛽)-stable object with numerical class 𝑦 − 2𝑥 for every
(𝛼, 𝛽) ∈ 𝑉. Then, 𝐹 = pr(𝐸) for some 𝐸 ∈ 𝑀𝐺(2, 1, 5).

Proof. First, we argue as in [51, Proposition 4.6]. When (𝛼0, 𝛽0) = (0, 0), we have 𝜇0
𝛼0,𝛽0

(𝐹) = −∞.
Since there are no walls intersecting with 𝛽 = 0 as in [51, Proposition 4.6], we know that 𝐹 is
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36 of 52 JACOVSKIS et al.

𝜎0
𝛼,0
-semistable for all 𝛼 > 0. By the definition of the double-tilted heart, we have a triangle

𝐴[1] → 𝐹 → 𝐵

such that 𝐴 (respectively, 𝐵) is in Coh0(𝑋) with its 𝜎𝛼,0-semistable factors having slope 𝜇𝛼,0 ⩽ 0

(respectively, 𝜇𝛼,0 > 0). Since 𝐹 is 𝜎0
𝛼,0
-semistable and 𝜇0

𝛼,0
(𝐹) < 0, we have that 𝐴[1] = 0 and

𝐵 ≅ 𝐹. Since ch0
1(𝐹) isminimal, there are nowalls on 𝛽 = 0, andwe know that𝐹 is 𝜎𝛼,0-semistable

for every 𝛼 > 0. Thus, by Lemma 4.5, −1(𝐹) is a 𝜇-semistable reflexive sheaf and 0(𝐹) is 0 or
supported in dimension ⩽ 1.
If 0(𝐹) is supported in dimension 0, then ch(0(𝐹)) = 𝑏𝑃 for 𝑏 ⩾ 1. But this is impossible

since then 𝑐3(
−1(𝐹)) > 0 and by [11, Proposition 3.5], we have 𝜒(−1(𝐹)) = 0, which implies

𝑏 = 0.
If 0(𝐹) is supported in dimension 1, we can assume ch(0(𝐹)) = 𝑎𝐿 + 𝑏

2
𝑃 where 𝑎 ⩾ 1 and

𝑏 are integers. Thus, ch(−1(𝐹)) = 2 − 𝐻 + 𝑎𝐿 + (5

6
+ 𝑏

2
)𝑃. Now from Lemma 7.7, we know

−1(𝐹) ≅  and ch(0(𝐹)) = 𝐿 − 𝑃

2
. Thus,0(𝐹) ≅ 𝐿(−1) for some line 𝐿 on 𝑋. Therefore, we

have a triangle

[1] → 𝐹 → 𝐿(−1).

In this case, we have Hom(𝐿(−1), [2]) = Hom(∨(1),𝐿[1]) = 𝐻1(𝐿, (−1)|𝐿) =

𝐻1(𝐿,𝐿(−1) ⊕ 𝐿(−2)) = 𝑘. Hence, by Lemma 8.4, 𝐹 ≅ pr(𝐸) for some 𝐸 ∈ 𝑀𝐺(2, 1, 5)

such that 𝐸 is locally free but not globally generated.
If 0(𝐹) = 0, we have 𝐹[−1] ≅ −1(𝐹). Then 𝐹[−1] is a 𝜇-semistable sheaf. Since 𝐹[−1] is

reflexive and 𝑐3(𝐹[−1]) = 0, 𝐹[−1] ∈ 𝑀𝐺(2, −1, 5) is a stable vector bundle. Thus, by Lemma 8.4,
we know 𝐹[−1] = pr(𝐸) for some 𝐸 ∈ 𝑀𝐺(2, 1, 5) such that 𝐸 is a globally generated vector
bundle. □

Lemma 8.11. The functor pr∶ D𝑏(𝑋) → 𝑋 is injective on all objects in 𝑀𝐺(2, 1, 5), that is, if
pr(𝐹1) ≅ pr(𝐹2), then 𝐹1 ≅ 𝐹2.

Proof. For the case of globally generated vector bundles, by Corollary 8.4, pr(𝐹1) ≅ pr(𝐹2) implies
that

(𝜄𝐹1)
∨ ≅ (𝜄𝐹2)

∨.

Note that (𝜄𝐹𝑖)
∨ ≅ 𝜄𝐹𝑖 ⊗ 𝑋(−𝐻) for 𝑖 = 1, 2. Then we get 𝜄𝐹1 ≅ 𝜄𝐹2. Finally, we apply 𝜄 to both

sides. Since it is an involution 𝜄2 = id, so 𝐹1 ≅ 𝐹2 as required.
For the case of nonlocally free sheaves 𝐹, recall that from Lemma 8.4, we have

−1(pr(𝐹)) =  and 0(pr(𝐹)) = 𝐿(−𝐻). Since 𝐹 is uniquely determined by the line 𝐿, and
Hom(𝐿(−𝐻), [2]) = 𝑘, the object pr(𝐹) is also uniquely determined by the line 𝐿. Thus,
pr(𝐹1) ≅ pr(𝐹2) implies 𝐹1 ≅ 𝐹2, as required. □

Proof of Theorem 8.9. Using Proposition 8.7, we know that the projection functor pr induces a
morphism

𝑝∶ 𝑀𝐺(2, 1, 5) → 𝜎(𝑋, 𝑦 − 2𝑥),
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which is bijective on points by Proposition 8.10 and Lemma 8.11, and bijective on tangent spaces
by Lemma 8.5. Hence, it is an isomorphism. □

9 REFINED AND BIRATIONAL CATEGORICAL TORELLI
THEOREMS FOR GM THREEFOLDS

In this section, we will prove several refined/birational categorical Torelli theorems for GM
threefolds, using results from the previous sections.

9.1 The universal family for 𝒎(𝑿)

In this subsection, we show that 𝑚(𝑋) ≅ 𝜎(𝑋, −𝑥) admits a universal family, which thus
gives a fine moduli space. Let  be the universal ideal sheaf of conics on 𝑋 × (𝑋) and 𝐿𝜎

be the
universal ideal sheaf of conics restricted to 𝑋 × 𝐿𝜎. Let 𝑞∶ 𝑋 × (𝑋) → 𝑋 and 𝜋∶ 𝑋 × (𝑋) →

(𝑋) be the projection maps on the first and second factors, respectively. Let ′ ∶= pr(𝐿𝜎
) be the

projected family in 𝑋×𝐿𝜎
. Let 𝑡 ∈ 𝐿𝜎 ≅ ℙ1 be any point. Then 𝑗∗

𝑡 pr(𝐿𝜎
) ≅ 𝐴, where 𝑗𝑡 ∶ 𝑋𝑡 →

𝑋𝑡 × 𝐿𝜎 and 𝐴 ∈ 𝑋 is 𝐴 ≅ pr(𝐼𝐶) for 𝐼𝐶 ∉ 𝑋 by Proposition 7.2. Then ′ ≅ 𝑞∗(𝐴) ⊗ 𝜋∗𝐿𝜎
(𝑘)

for some 𝑘 ∈ ℤ. Now let  ∶= pr() ⊗ 𝜋∗(𝑋)(𝑘𝐸), where𝐸 ≅ 𝐿𝜎 ≅ ℙ1 is the unique exceptional
curve on (𝑋).

Proposition 9.1. The object (𝑝𝑋)∗ is the universal family of 𝑚(𝑋), where 𝑝𝑋 = id𝑋 × 𝑝∶ 𝑋 ×

(𝑋) → 𝑋 × 𝑚(𝑋).

Proof.

(1) If 𝑠 = [𝐴] = 𝜋 ∈ 𝑚(𝑋), 𝑠 is contracted from the unique rational curve 𝐿𝜎 ≅ ℙ1 ⊂ (𝑋). Note
that in this case, 𝑝𝑋|𝐿𝜎

= 𝑞. Then

𝑖∗𝑠 (𝑝𝑋)∗ ≅ 𝑖∗𝑠 (𝑝𝑋)∗(
′ ⊗ 𝜋∗(𝑋)(𝑘𝐸))

≅ 𝑖∗𝑠 𝑞∗(𝑞
∗(𝐴) ⊗ 𝜋∗𝐿𝜎

(𝑘) ⊗ 𝜋∗(𝑋)(𝑘𝐸))

≅ 𝑖∗𝑠 𝑞∗(𝑞
∗(𝐴) ⊗ (𝜋∗𝐿𝜎

(𝑘) ⊗ 𝐿𝜎
(𝑘𝐸)))

≅ 𝑖∗𝑠 𝑞∗(𝑞
∗(𝐴) ⊗ 𝜋∗(𝐿𝜎

(𝑘) ⊗ 𝐿𝜎
(−𝑘)))

≅ 𝑖∗𝑠 𝑞∗(𝑞
∗(𝐴)) ≅ 𝑖∗𝑠 (𝐴) ≅ 𝐴.

(2) If 𝑠 = [𝐼𝐶], then 𝑚(𝑋) and (𝑋) are isomorphic outside 𝐿𝜎. Note that 𝑝 restricts to id on
(𝑋) ⧵ 𝐿𝜎. Then

𝑖∗𝑠 (𝑝𝑋)∗ ≅ 𝑖∗𝑠 (𝑝𝑋)∗(pr() ⊗ 𝜋∗(𝑋)(𝑘𝐸))

≅ 𝑗∗
𝑠 (pr()) ⊗ 𝑗∗

𝑠 𝜋
∗(𝑋)(𝑘𝐸)

≅ 𝐼𝐶 ⊗ (𝜋◦𝑗𝑠)
∗(𝑋)(𝑘𝐸)

≅ 𝐼𝐶 ⊗ (𝑖𝑠◦𝜋𝑠)
∗(𝑋)(𝑘𝐸) ≅ 𝐼𝐶.
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38 of 52 JACOVSKIS et al.

See below for the commutative diagrams that summarize the maps in the proof:

□

9.2 A refined categorical Torelli theorem for ordinary GM threefolds

We now prove a refined categorical Torelli theorem for ordinary GM threefolds.

Theorem 9.2. Let 𝑋 and 𝑋′ be general ordinary GM threefolds such that Φ∶ 𝑢(𝑋) ≃ 𝑢(𝑋′) is
an equivalence and Φ(𝜋()) ≅ 𝜋( ′). Then 𝑋 ≅ 𝑋′.

Proof. SinceΦ commutes with Serre functors, it preserves the stability of an object with respect to
any Serre-invariant stability condition. Then, the existence of the universal family on 𝑚(𝑋) ≅

𝜎(𝑋, −𝑥) guarantees a morphism from 𝑚(𝑋) to 𝑚(𝑋′), denoted by 𝜓, which is induced
by Ψ (for more details on the construction of the morphism 𝜓, see [1, 8]). Since Φ is an equiv-
alence, 𝜓 is an isomorphism. On the other hand, we have 𝜓([𝜋𝑋]) = [𝜋𝑋′] by the assumption,
where 𝜋𝑋 ∶= 𝜋′(∨) and 𝜋𝑋′ ∶= 𝜋′(∨). Then 𝜓 induces an isomorphism 𝜙∶ (𝑋) ≅ (𝑋′) by
blowing up [𝜋𝑋] ∈ 𝑚(𝑋) and [𝜋𝑋′] ∈ 𝑚(𝑋′), respectively. Then we have 𝑋 ≅ 𝑋′ by Logachev’s
Reconstruction Theorem 6.7. □

9.3 Birational categorical Torelli theorem for ordinary GM threefolds

In this subsection, we show a birational categorical Torelli theorem for ordinary GM threefolds,
that is, assuming the Kuznetsov components are equivalent leads to a birational equivalence of
the ordinary GM threefolds.

Theorem 9.3. Let 𝑋 and 𝑋′ be general ordinary GM threefolds such that𝑋 ≃ 𝑋′ . Then 𝑋′ is a
conic transform or a conic transform of a line transform of 𝑋. In particular, we have 𝑋 ≃ 𝑋′.

Proof. The equivalence Φ∶ 𝑋

∼
n→ 𝑋′ sends −𝑥 to either itself or 𝑦 − 2𝑥 in (𝑋′) up to sign

since they are only (−1)-class. By the same argument as in Theorem 9.2 and [1, 8], we thus get two
possible induced isomorphisms between Bridgeland moduli spaces
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CATEGORICAL TORELLI FOR GM THREEFOLDS 39 of 52

If we have the isomorphism 𝛾, then we blow up 𝑚(𝑋) at the distinguished point [𝜋𝑋] ∶=

[Ξ(𝜋())], and blow up 𝑚(𝑋′) at the point [𝐶] ∶= [Φ(𝜋𝑋)] = 𝛾([𝜋𝑋]). We have

(𝑋) ≅ Bl[𝜋𝑋]𝑚(𝑋) ≅ Bl[𝐶]𝑚(𝑋′),

andBl[𝐶]𝑚(𝑋′) ≅ (𝑋′
𝐶
) byTheorem6.8, so(𝑋) ≅ (𝑋′

𝐶
). Therefore, by Logachev’s Reconstruc-

tion Theorem 6.7, we have 𝑋 ≅ 𝑋′
𝐶
.

For the second case, we get 𝑚(𝑋) ≅ 𝑀𝑋′

𝐺
(2, 1, 5). And by [13, Proposition 8.1], we have a bira-

tional equivalence𝑀𝑋′

𝐺
(2, 1, 5) ≃ (𝑋′

𝐿
) of surfaces, where 𝐿 ⊂ 𝑋′ is a line. Then we see 𝑚(𝑋) is

birationally equivalent to (𝑋′
𝐿
). Let 𝑚(𝑋′

𝐿
) be the minimal surface of (𝑋′

𝐿
). Note that the sur-

faces here are all smooth surfaces of general type. By the uniqueness ofminimalmodels of surfaces
of general type, we get 𝑚(𝑋) ≅ 𝑚(𝑋′

𝐿
), which implies 𝑋 ≅ (𝑋′

𝐿
)𝐶 ≃ 𝑋′ for a conic 𝐶 ⊂ 𝑋′

𝐿
as in

the first case. □

Remark 9.4. Theorem 9.3 proves a conjecture [34, Conjecture 1.7] of Kuznetsov–Perry for general
ordinary GM varieties of dimension 3.

In [13], the authors proved that 𝑚(𝑋𝐿) is birational to 𝑀𝑋
𝐺
(2, 1, 5). The following corollary

shows that they are indeed isomorphic.

Corollary 9.5. Let𝑋 be a general ordinary GM threefold, and𝑋𝐿 be a line transform of𝑋. Then, we
have 𝑚(𝑋𝐿) ≅ 𝑀𝑋

𝐺
(2, 1, 5). Moreover, this isomorphism commutes with involutions 𝜄 and 𝜄′ on both

sides, thus giving an isomorphism 𝑚(𝑋𝐿)∕𝜄 ≅ 𝑀𝑋
𝐺
(2, 1, 5)∕𝜄′.

Proof. By the same argument as in the proof of Theorem 9.3, we have 𝑚(𝑋𝐿) ≅ 𝑚(𝑋) or
𝑚(𝑋𝐿) ≅ 𝑀𝑋

𝐺
(2, 1, 5). Note that 𝑚(𝑋𝐿) ≅ 𝑚(𝑋) implies that 𝑋𝐿 ≅ 𝑋𝐶 for some conic 𝐶 ⊂ 𝑋

as in Theorem 9.3. But this is impossible by [13, Remark 7.3]. Thus, we always have 𝑚(𝑋𝐿) ≅

𝑀𝑋
𝐺
(2, 1, 5). The last statement follows from the fact that any equivalence between Kuznetsov

components commutes with Serre functors, and the involutions on 𝑚(𝑋𝐿) and 𝑀𝑋
𝐺
(2, 1, 5) can

be induced by Serre functors up to shift by Propositions 7.13 and 8.8. □

Since the intermediate Jacobian 𝐽(𝑋) is invariant under conic and line transforms, as a corollary
we have the following.

Corollary 9.6. Let 𝑋 and 𝑋′ be general ordinary GM threefolds. If𝑢(𝑋) ≃ 𝑢(𝑋′), then we have
𝐽(𝑋) ≅ 𝐽(𝑋′).

In fact, we can relax the assumptions on 𝑋 by looking at the singularities of Bridgeland moduli
spaces.

Theorem 9.7. Let 𝑋 and 𝑋′ be general GM threefolds (they can be either general ordinary or gen-
eral special), and suppose that their Kuznetsov components 𝑋 ≃ 𝑋′ are equivalent. Then 𝑋 is
birationally equivalent to 𝑋′.

Proof. First, we claim that if 𝑋 and 𝑋′ are general GM threefolds such that Φ∶ 𝑋 ≃ 𝑋′ , then
both 𝑋 and 𝑋′ are ordinary or special simultaneously. Indeed, we may assume that 𝑋′ is ordinary
and 𝑋 is special. Then the equivalence would identify the moduli space 𝑚(𝑋) ≅ 𝜎(𝑋, −𝑥)

of stable objects of class −𝑥 in 𝑋 with either the moduli space 𝑚(𝑋′) ≅ 𝜎′(𝑋′ , −𝑥) or
𝑀𝑋′

𝐺
(2, 1, 5) ≅ 𝜎′(𝑋′ , 𝑦 − 2𝑥). But 𝑚(𝑋) has a unique singular point by Theorem 7.12, and

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



40 of 52 JACOVSKIS et al.

both 𝑚(𝑋′) and 𝑀𝑋′

𝐺
(2, 1, 5) are smooth for 𝑋′ general by Theorems 7.12 and 8.9. This means

that neither identification is possible, so the claim follows.
Now 𝑋 and 𝑋′ are both general ordinary or general special, hence the result follows from

Theorem 9.3 and 9.4. □

Corollary 9.8. Let 𝑋 and 𝑋′ be general GM threefolds such that one of them is ordinary and their
Kuznetsov components 𝑋 ≃ 𝑋′ are equivalent. Then they are both general ordinary and 𝑋 is
birationally equivalent to 𝑋′.

9.4 A categorical Torelli theorem for special GM threefolds

In this subsection, we show that the Kuznetsov component of a general special GM threefold 𝑋

determines the isomorphism class of 𝑋.
Recall from Section 3 that every special GM threefold 𝑋 is a double cover of a degree 5 index

2 prime Fano threefold 𝑌 branched over a quadric hypersurface  in 𝑌. Since 𝑋 is smooth and
general, (, ℎ) is a smooth degree ℎ2 = 10 K3 surface with Picard number 1. There is a natural
geometric involution 𝜏 on 𝑋 induced by the double cover. The Serre functor on𝑢(𝑋) is given by
𝑆𝑢(𝑋) = 𝜏◦[2].

Theorem 9.9. Let 𝑋 and 𝑋′ be general special GM threefolds with Φ∶ 𝑢(𝑋) ≃ 𝑢(𝑋′). Then
𝑋 ≅ 𝑋′.

Proof. By [32, Theorem 1.1, Section 8.2], the equivariant triangulated category 𝑢(𝑋)𝜇2 is equiv-
alent to D𝑏(), where 𝜇2 is the group of square roots of 1 generated by the involution 𝜏 acting
on 𝑢(𝑋). Assume that there is an equivalence Φ∶ 𝑢(𝑋) ≃ 𝑢(𝑋′). Since 𝑆𝑢(𝑋) ≅ 𝜏[2] and
𝑆𝑢(𝑋′) ≅ 𝜏′[2], Φ commutes with the involutions 𝜏 and 𝜏′ on 𝑢(𝑋) and 𝑢(𝑋′), respectively.
Then we get an induced equivalence

Ψ ∶ 𝑢(𝑋)𝜇2 ≃ 𝑢(𝑋′)𝜇
′
2 ,

where 𝜇2 = ⟨𝜏⟩, 𝜇′
2
= ⟨Φ◦𝜏◦Φ−1 = 𝜏′⟩ and 𝜇2 ≅ 𝜇′

2
. Thus, we haveΨ∶ D𝑏() ≃ D𝑏(′). We know

that  and ′ are smooth projective surfaces with polarizations ℎ and ℎ′, respectively, so Ψ is a
Fourier–Mukai functor by Orlov’s representability theorem [45, Theorem 2.2]. Moreover, (, ℎ)

and (′, ℎ′) are both Picard number 1 smooth projective K3 surfaces of degree ℎ2 = ℎ′2 = 10 =

2 × 5. Then by [44, Theorem 1.10] and [20, Corollary 1.7], there is an isomorphism 𝜙∶  ≅ ′.
Since they both have Picard number one, we obtain 𝜙∗(ℎ′) = ℎ. On the other hand, 𝑌5 is rigid
[29, § 4.1], which implies 𝑋 ≅ 𝑋′. □

Remark 9.10. Theorem 9.9 can also be proved via Bridgeland moduli spaces with respect to the
Kuznetsov component𝑋 . The details are contained in another paper of authors [26].

10 THE DEBARRE–ILIEV–MANIVEL CONJECTURE

Let10 be themoduli space of smooth ordinary GM threefolds and10 be themoduli space of 10-
dimensional principal polarized abelian varieties. In [13, pp. 3–4], the authors make the following
conjecture regarding the general fiber of the period map.

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CATEGORICAL TORELLI FOR GM THREEFOLDS 41 of 52

Conjecture 10.1 [13, pp. 3-4]. A general fiber −1([𝐽(𝑋)]) of the period map  ∶ 10 → 10 at the
intermediate Jacobian 𝐽(𝑋) of an ordinary GM threefold 𝑋 is the union of 𝑚(𝑋)∕𝜄 and a surface
birationally equivalent to𝑀𝑋

𝐺
(2, 1, 5)∕𝜄′, where 𝜄, 𝜄′ are geometrically meaningful involutions.

Remark 10.2. Note that byCorollary 9.5, the surface birationally equivalent to𝑀𝐺(2, 1, 5)∕𝜄′ in [13],
parametrizing conic transforms of a line transform of 𝑋, is actually isomorphic to 𝑀𝐺(2, 1, 5)∕𝜄′.
Thus, this conjecture predicts that a general fiber −1([𝐽(𝑋)]) is actually the disjoint union of
𝑚(𝑋)∕𝜄 and𝑀𝐺(2, 1, 5)∕𝜄′.

We will prove a categorical analog of this conjecture. Consider the “categorical period map”

cat ∶ 10 → {𝑋}∕ ≃, 𝑋 ↦ 𝑋,

where 10 is the moduli space of isomorphism classes of GM threefolds and {𝑋}∕ ≃ is the set
of equivalence classes of Kuznetsov components of GM threefolds. Note that a global description
of a “moduli of Kuznetsov components” {𝑋}∕ ≃ is not known; however, local deformations are
controlled by the second Hochschild cohomology HH2(𝑋). The fiber of the “categorical period
map” cat over 𝑋 for an ordinary GM threefold is defined as the isomorphism classes of all
ordinary GM threefolds 𝑋′ such that𝑋′ ≃ 𝑋 .

Theorem 10.3. The general fiber −1
cat ([𝑋]) of the categorical period map over the alternative

Kuznetsov component of an ordinary GM threefold 𝑋 is the union of 𝑚(𝑋)∕𝜄 and 𝑀𝑋
𝐺
(2, 1, 5)∕𝜄′

where 𝜄, 𝜄′ are geometrically meaningful involutions.

Proof. The general fiber −1
cat ([𝑋]) of the categorical period map consists of GM threefolds 𝑋′

such that there is an equivalence of Kuznetsov components𝑋′ ≃ 𝑋 . Then, by Theorem 9.7, 𝑋′

is also a general ordinary GM threefold. Thus, by Theorems 9.3 and 6.10, we know that𝑋′ ≃ 𝑋

if and only if 𝑋′ is a conic transform of 𝑋, or a conic transform of a line transform of 𝑋. Then, the
result follows from Proposition 6.9 and Corollary 9.5. □

The Kuznetsov components of prime Fano threefolds of index 1 and 2 are often regarded as
categorical analogues of the intermediate Jacobians of these threefolds, and it is known that if
there is a Fourier–Mukai-type equivalence 𝑢(𝑋) ≃ 𝑢(𝑋′) (or 𝑋 ≃ 𝑋′), then 𝐽(𝑋) ≅ 𝐽(𝑋′)

by [47]. For the converse, we have the following result.

Theorem 10.4. For smooth prime Fano threefolds 𝑋, if 𝑋 is one of the following:

∙ 𝑌𝑑, 2 ⩽ 𝑑 ⩽ 5
∙ 𝑋2g−2, g = 5, 7, 8, 9, 10, 12,

then the intermediate Jacobian 𝐽(𝑋) uniquely determines the Kuznetsov component 𝑢(𝑋), that
is, for another prime Fano threefold 𝑋′ of the same degree, if 𝐽(𝑋) ≅ 𝐽(𝑋′), then𝑢(𝑋) ≃ 𝑢(𝑋′).

Proof. If 𝑋 is an index 2 prime Fano threefold 𝑌𝑑 of degree 2 ⩽ 𝑑 ⩽ 5, then the statement fol-
lows from the Torelli theorems for 𝑌𝑑. Now let 𝑋𝑑 be a degree 𝑑 index one prime Fano threefold.
If 𝑋 = 𝑋8, the statement follows from its Torelli theorem. If 𝑋 = 𝑋12, 𝑋18, 𝑋16, their intermedi-
ate Jacobians are Jacobians of curves: 𝐽(𝑋12) ≅ 𝐽(𝐶7), 𝐽(𝑋16) ≅ 𝐽(𝐶3), and 𝐽(𝑋18) ≅ 𝐽(𝐶2). But
𝑢(𝑋12) ≃ D𝑏(𝐶7),𝑢(𝑋16) ≃ D𝑏(𝐶3), and𝑢(𝑋18) ≃ D𝑏(𝐶2). Thus, the statement follows from
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42 of 52 JACOVSKIS et al.

the classical Torelli theorem for curves. If 𝑋 = 𝑋14, the statement follows from the Kuznetsov
conjecture for the pair (𝑌3, 𝑋14) [28] and the Torelli theorem for cubic threefolds. If 𝑋 = 𝑋22, the
statement is trivial since 𝑢(𝑋22) ≅ 𝑢(𝑌5) ([35]) and 𝑌5 is rigid, so 𝑢(𝑋) ≃ 𝑢(𝑋′) is always
true. □

Therefore, it is natural to make the following conjecture.

Conjecture 10.5. Let𝑋 be a prime Fano threefold of index one or two. Then the intermediate Jaco-
bian 𝐽(𝑋) uniquely determines the Kuznetsov component 𝑢(𝑋), that is, for another prime Fano
threefold 𝑋′ of the same degree, if 𝐽(𝑋) ≅ 𝐽(𝑋′), then𝑢(𝑋) ≃ 𝑢(𝑋′).

Surprisingly, in the case of general ordinary GM threefolds, we can restate the Debarre–Iliev–
Manivel Conjecture 10.1 as Conjecture 10.5.

Proposition 10.6. The Debarre–Iliev–Manivel Conjecture 10.1 is equivalent to Conjecture 10.5 for
general ordinary GM threefolds.

Proof. First, we assume that Conjecture 10.5 holds. Then by Corollary 9.6 and Theorem 10.3, the
Debarre–Iliev–Manivel Conjecture 10.1 holds.
On the other hand, we assume that the Debarre–Iliev–Manivel Conjecture 10.1 holds. Then for

any 𝑋 and 𝑋′ such that 𝐽(𝑋) ≅ 𝐽(𝑋′), 𝑋 is either a conic transform of 𝑋′, or 𝑋 is a conic trans-
form of a line transform of 𝑋′. In both cases, we have𝑢(𝑋) ≃ 𝑢(𝑋′) by the Duality Conjecture
Theorem 6.10. Thus, Conjecture 10.5 holds. □

APPENDIX: UNIQUENESS OF SERRE-INVARIANT STABILITY CONDITIONS
In this appendix, we aim to prove the uniqueness of Serre-invariant stability conditions on𝑢(𝑋)

for several primeFano threefolds𝑋 (TheoremA.10).We startwith a general criterion forwhen two
numerical stability conditions with the same central charge are equal. We always assume that any
triangulated category is 𝑘-linear and of finite type, that is,

∑
𝑖 ext

𝑖(𝐴, 𝐵) < +∞ for any two objects
𝐴, 𝐵. Therefore, the Euler form and the numerical Grothendieck group are well defined.

Theorem A.1. Let be a 𝑘-linear triangulated category of finite type. Assume that

(A) 𝜒(𝑥, 𝑥) ⩽ 1 − 𝑛 for a positive integer 𝑛 and any nonzero 𝑥 ∈  (),
(B) there exists an object 𝐷 satisfies

𝑛 ⩽ ext1(𝐷, 𝐷) < 2𝑛,

Let 𝜎1 = (1, 𝑍) be a numerical stability condition on and𝐷1, 𝐷2 ∈ 1 be two 𝜎1-stable objects
satisfying:

(C) for any two objects 𝐴, 𝐵 ∈ , if 𝜙+
𝜎1

(𝐵) < 𝜙−
𝜎1

(𝐴), thenHom(𝐵,𝐴[2]) = 0,

(D) if𝐸 is a 𝜎1-semistable object with𝜒(𝐸, 𝐷1) ⩾ 0 and𝜒(𝐸, 𝐷2) ⩾ 0, then there exist 𝑘 ∈ {1, 2} such
that 𝜒(𝐸, 𝐷𝑘) > 0 and 𝜇𝜎1

(𝐸) < 𝜇𝜎1
(𝐷𝑘), and

(E) if𝐸 is a 𝜎1-semistable object with𝜒(𝐷1, 𝐸) ⩾ 0 and𝜒(𝐷2, 𝐸) ⩾ 0, then there exist 𝑘 ∈ {1, 2} such
that 𝜒(𝐷𝑘, 𝐸) > 0 and 𝜇𝜎1

(𝐸) > 𝜇𝜎1
(𝐷𝑘).

If 𝜎2 = (2, 𝑍) is a numerical stability condition on that satisfies (C), (D), and (E) such that𝐷1

and 𝐷2 are 𝜎2-stable with 𝜙𝜎2
(𝐷1) = 𝜙𝜎1

(𝐷1) and 𝜙𝜎2
(𝐷2) = 𝜙𝜎1

(𝐷2), then 𝜎1 = 𝜎2.
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CATEGORICAL TORELLI FOR GM THREEFOLDS 43 of 52

We first prove several lemmas. By the same proof as in [3, Lemma 2.5], we have the following
generalized version of Weak Mukai lemma.

Lemma A.2. Let  be a 𝑘-linear triangulated category with finite-dimensional Hom-space. Then
for any exact triangle 𝐴 → 𝐸 → 𝐵 withHom(𝐴, 𝐵) = Hom(𝐵,𝐴[2]) = 0, we have

ext1(𝐴,𝐴) + ext1(𝐵, 𝐵) ⩽ ext1(𝐸, 𝐸).

Lemma A.3. Let be a 𝑘-linear triangulated category of finite type that satisfies (A). Assume that
there is a stability condition 𝜎 = (, 𝑍) on satisfies (C).

(1) The homological dimension of is at most 2.
(2) For any exact triangle 𝐴 → 𝐸 → 𝐵 with 𝜙−

𝜎 (𝐴) > 𝜙+
𝜎 (𝐵), we have

ext1(𝐴,𝐴) + ext1(𝐵, 𝐵) ⩽ ext1(𝐸, 𝐸).

(3) For any nonzero object 𝐴 ∈ , we have ext1(𝐴,𝐴) ⩾ 𝑛.
(4) If a nonzero object 𝐸 is not 𝜎-semistable, then any Harder–Narasimhan factor 𝐴 of 𝐸 satisfies

ext1(𝐴,𝐴) < ext1(𝐸, 𝐸).

(5) Any object 𝐸 with

𝑛 ⩽ ext1(𝐸, 𝐸) < 2𝑛

is 𝜎-semistable.

Proof. Let 𝐴, 𝐵 ∈ . Then, we have 𝜙+
𝜎 (𝐴) ⩽ 1 < 𝜙−

𝜎 (𝐵[𝑘]) for any 𝑘 ⩾ 1. Therefore, by (C), we
get Hom(𝐴, 𝐵[𝑘 + 2]) = Hom(𝐴, 𝐵[𝑘][2]) = 0 for any 𝑘 ⩾ 0. This proves (1).
Now for (2), note thatHom(𝐴, 𝐵) = 0 and by (C),wehaveHom(𝐵,𝐴[2]). Then the result follows

from Lemma A.2.
Next, we prove (3). If 𝐴 ≠ 0 ∈ , then from (1), we get 𝜒(𝐴,𝐴) = hom(𝐴,𝐴) − ext1(𝐴,𝐴) +

ext2(𝐴,𝐴). Since 𝜒(𝐴,𝐴) ⩽ 1 − 𝑛 by (A), we know that ext1(𝐴,𝐴) ⩾ 𝑛 in this case. Now for a
general nonzero object𝐴 ∈ , if𝐴 is 𝜎-semistable, then it is in up to shift and the result follows
from the previous argument. So, we assume that𝐴 is not 𝜎-semistable. Let𝐴′ be the first Harder–
Narasimhan factor of 𝐴 with respect to 𝜎, and 𝐴′′ ∶= cone(𝐴′ → 𝐴). We have 𝜙𝜎(𝐴

′) > 𝜙+
𝜎 (𝐴′′).

Using (2) and 𝜎-semistability of 𝐴′, we obtain 𝑛 ⩽ ext1(𝐴′, 𝐴′) + ext1(𝐴′′, 𝐴′′) ⩽ ext1(𝐴,𝐴), and
hence, (3) follows. And (4) follows from the induction on the number of Harder–Narasimhan
factors of 𝐸 and using (2) and (3).
Finally, if such 𝐸 in (5) is not 𝜎-semistable, then by the existence of Harder–Narasimhan filtra-

tion, we can find a triangle 𝐴 → 𝐸 → 𝐵 with 𝜙−
𝜎 (𝐴) > 𝜙+

𝜎 (𝐵). By (2) and (3), this contradicts our
assumption on ext1(𝐸, 𝐸). Thus, 𝐸 is 𝜎-semistable. □

Now we are ready to prove our criterion.

Proof of TheoremA.1. Since 𝜎1 and 𝜎2 have the same central charge, it remains to show1 = 2.
By our assumptions, 𝐷1, 𝐷2 ∈ 1 ∩ 2 are both 𝜎1-stable and 𝜎2-stable with phases in (0,1].
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44 of 52 JACOVSKIS et al.

Step 1. First, we show that if𝐸 is a 𝜎𝑖-semistable object that is also 𝜎𝑗-semistable, then 𝜙𝜎1
(𝐸) =

𝜙𝜎2
(𝐸), where {𝑖, 𝑗} = {1, 2}. Since𝜎1 and𝜎2 satisfy the same assumptions, in the following, wewill

take 𝑖 = 2 and 𝑗 = 1. The other case can be deduced from the same argument but exchanges the
role of 𝜎1 and 𝜎2.
Up to shift, we can assume that 𝐸 ∈ 2. Since 𝜎1 and 𝜎2 have the same central charge, we have

𝜙𝜎1
(𝐸) − 𝜙𝜎2

(𝐸) = 2𝑚 for an integer𝑚. Then, we see

2𝑚 < 𝜙𝜎1
(𝐸) ⩽ 2𝑚 + 1. (A.1)

∙ Assume that there exist 𝑘, 𝑙 ∈ {1, 2} such that 𝜒(𝐷𝑘, 𝐸) < 0 and 𝜒(𝐸, 𝐷𝑙) < 0. Then by
Lemma A.3 (1) and the fact that 𝐸,𝐷1, 𝐷2 ∈ 2, we have

ext1(𝐷𝑘, 𝐸) ≠ 0, ext1(𝐸, 𝐷𝑙) ≠ 0,

which imply

−1 < 𝜙𝜎1
(𝐷𝑘) − 1 ⩽ 𝜙𝜎1

(𝐸) ⩽ 𝜙𝜎1
(𝐷𝑙) + 1 ⩽ 2.

Hence, by (A.1), we get 2𝑚 < 2 and −1 < 2𝑚 + 1, which means𝑚 = 0 and we obtain 𝜙𝜎1
(𝐸) =

𝜙𝜎2
(𝐸) as required.

∙ Assume that 𝜒(𝐸, 𝐷1) ⩾ 0 and 𝜒(𝐸, 𝐷2) ⩾ 0. By (D), there is an integer 𝑠 ∈ {1, 2} such that
𝜒(𝐸, 𝐷𝑠) > 0 and 𝜇𝜎1

(𝐸) < 𝜇𝜎1
(𝐷𝑠). Thus, we have 𝜇𝜎2

(𝐸) < 𝜇𝜎2
(𝐷𝑠) as well. Since 𝐸,𝐷𝑠 ∈ 2,

we get 𝜙𝜎2
(𝐸) < 𝜙𝜎2

(𝐷𝑠), which impliesHom(𝐸,𝐷𝑠[2]) = 0 by (C). Then from 𝜒(𝐸, 𝐷𝑠) > 0 and
Lemma A.3 (1), we obtain Hom(𝐸,𝐷𝑠) ≠ 0, and hence,

𝜙𝜎1
(𝐸) ⩽ 𝜙𝜎1

(𝐷𝑠) ⩽ 1.

Now if one of 𝜒(𝐷1, 𝐸) and 𝜒(𝐷2, 𝐸) is negative, the same argument as in the first case shows
that −1 < 𝜙𝜎1

(𝐸).
If 𝜒(𝐷1, 𝐸) ⩾ 0 and 𝜒(𝐷2, 𝐸) ⩾ 0, then by (E), there is an integer 𝑡 ∈ {1, 2} such that

𝜒(𝐷𝑡, 𝐸) > 0 and 𝜇𝜎1
(𝐸) = 𝜇𝜎2

(𝐸) > 𝜇𝜎1
(𝐷𝑡) = 𝜇𝜎2

(𝐷𝑡). Since 𝐸,𝐷𝑡 ∈ 2, we get 𝜙𝜎2
(𝐸) >

𝜙𝜎2
(𝐷𝑡), which by (C) implies Hom(𝐷𝑡, 𝐸[2]) = 0. Then together with 𝜒(𝐷𝑡, 𝐸) > 0 and

LemmaA.3 (1), we seeHom(𝐷𝑡, 𝐸) ≠ 0. Therefore, we have 0 < 𝜙𝜎1
(𝐷𝑡) ⩽ 𝜙𝜎1

(𝐸). In both cases,
we always have 𝜙𝜎1

(𝐸) ∈ (−1, 2]. By (A.1), we get𝑚 = 0 and 𝜙𝜎1
(𝐸) = 𝜙𝜎2

(𝐸) as required.
∙ Assume that𝜒(𝐷1, 𝐸) ⩾ 0 and𝜒(𝐷2, 𝐸) ⩾ 0. Thenusing (E), by a similar argument as the second
case, we obtain 𝜙𝜎1

(𝐸) = 𝜙𝜎2
(𝐸). This completes the first step.

Step 2. Next, we prove that an object 𝐸 is 𝜎1-semistable if and only if 𝜎2-semistable. We show
this by induction on ext1(𝐸, 𝐸). If ext1(𝐸, 𝐸) < 2𝑛, then from (B), we know that such 𝐸 exists. By
Lemma A.3 (5), 𝐸 is both 𝜎1-semistable and 𝜎2-semistable.
Now assume that the statement holds for any object 𝐹 with ext1(𝐹, 𝐹) < 𝑁 for an integer 𝑁 >

2𝑛. Let 𝐸 be an object with ext1(𝐸, 𝐸) = 𝑁. If 𝐸 is 𝜎𝑖-semistable but not 𝜎𝑗-semistable for {𝑖, 𝑗} =

{1, 2}, let 𝐴 be the first Harder–Narasimhan factor of 𝐸 with respect to 𝜎𝑗 and 𝐵 be the last one.
Therefore, we see

𝜙𝜎𝑗
(𝐴) > 𝜙𝜎𝑗

(𝐵). (A.2)

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CATEGORICAL TORELLI FOR GM THREEFOLDS 45 of 52

And from Lemma A.3 (4), we have

ext1(𝐴,𝐴) < ext1(𝐸, 𝐸), ext1(𝐵, 𝐵) < ext1(𝐸, 𝐸).

Therefore, by the induction hypothesis, 𝐴 and 𝐵 are 𝜎𝑖-semistable as well and the first step
implies

𝜙𝜎1
(𝐴) = 𝜙𝜎2

(𝐴), 𝜙𝜎1
(𝐵) = 𝜙𝜎2

(𝐵). (A.3)

But then from Hom(𝐴, 𝐸) ≠ 0 and Hom(𝐸, 𝐵) ≠ 0, we have 𝜙𝜎𝑖
(𝐴) ⩽ 𝜙𝜎𝑖

(𝐸) ⩽ 𝜙𝜎𝑖
(𝐵), which

contradicts (A.2) and (A.3). Hence, 𝐸 is 𝜎𝑗-semistable. This completes our induction argument.
Step 3. Finally, by the previous two steps, we know that an object 𝐸 is 𝜎1-semistable if and

only if 𝜎2-semistable with 𝜙𝜎1
(𝐸) = 𝜙𝜎2

(𝐸). Since every nonzero object in the heart is obtained by
extensions of semistable objects with phases in (0,1], we know that1 = 2. This ends the proof
of our theorem. □

A.1 Applications to Kuznetsov components of Fano threefolds
Let 𝑌𝑑 be smooth index 2 degree 𝑑 ⩾ 2 prime Fano threefold and 𝑋4𝑑+2 an index 1 degree 4𝑑 +

2 prime Fano threefold. In this section, we apply Theorem A.1 to show that all Serre-invariant
stability conditions on 𝑢(𝑌𝑑) and 𝑢(𝑋4𝑑+2) (or 𝑋4𝑑+2

) are in the same G̃L
+
(2, ℝ)-orbit for

each 𝑑 ⩾ 2 (Theorem A.10).
Recall that the Kuznetsov component of an index two prime Fano threefold 𝑌𝑑 of degree 𝑑 is

defined by𝑢(𝑌𝑑) ∶= ⟨𝑌𝑑
,𝑌𝑑

(𝐻)⟩⟂. The numerical Grothendieck group (𝑢(𝑌𝑑)) is a rank
two lattice generated by two classes

𝑣 = 1 −
1

𝑑
𝐻2, 𝑤 = 𝐻 −

1

2
𝐻2 +

(
1

6
−

1

𝑑

)
𝐻2.

Moreover, under this basis, the Euler form is given by the matrix(
−1 −1

1 − 𝑑 −𝑑

)
.

For index one cases, we assume that 𝑑 ⩾ 2. Then the Kuznetsov component is defined by
𝑢(𝑋4𝑑+2) ∶= ⟨𝑋4𝑑+2

,𝑋4𝑑+2
⟩⟂, where 𝑋4𝑑+2

is a certain exceptional bundle pulled back from
a Grassmannian (cf. [28]).
By [4], 𝜎(𝛼, 𝛽) is a stability condition on 𝑢(𝑌𝑑) and 𝑢(𝑋4𝑑+2) for suitable (𝛼, 𝛽). Moreover,

according to [48, 51], these stability conditions are all Serre-invariant.
Since for every index one prime Fano threefold 𝑋4𝑑+2 with 𝑑 ⩾ 3, there is an index two prime

Fano threefold 𝑌𝑑 with𝑢(𝑌𝑑) ≃ 𝑢(𝑋4𝑑+2) by [28], hence we only need to consider Kuznetsov
components of 𝑌𝑑 for 𝑑 ⩾ 2 and 𝑋10. Moreover, 𝑢(𝑌4) is equivalent to the derived category of
a smooth curve, and 𝑢(𝑌5) is equivalent to the derived category of the 3-Kronecker quiver. In
these two cases, the result is known by [42] and [15]. So, in the following, we mainly focus on
 = 𝑢(𝑌𝑑) for 2 ⩽ 𝑑 ⩽ 3 or𝑢(𝑋10). We first prove some properties of Serre-invariant stability
conditions.

Lemma A.4. Let  = 𝑢(𝑌𝑑) for 2 ⩽ 𝑑 ⩽ 3 or 𝑢(𝑋10) and 𝜎 = (, 𝑍) be a Serre-invariant sta-
bility condition on. Then satisfies (A) and (B) in Theorem A.1 and 𝜎 satisfies (C). Moreover, for
any 𝜎-semistable object 𝐸 ∈ , we have:
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46 of 52 JACOVSKIS et al.

(1) if = 𝑢(𝑌3), then

𝜙𝜎(𝐸) + 1 ⩽ 𝜙𝜎(𝑆(𝐸)) < 𝜙𝜎(𝐸) + 2,

(2) if = 𝑢(𝑌2) or𝑢(𝑋10), then

𝜙𝜎(𝑆(𝐸)) = 𝜙𝜎(𝐸) + 2.

Proof. It is clear that satisfies (A). And by [51, Lemma 5.16] and Proposition 8.7, also satisfies
(B). When = 𝑢(𝑌3), by [51, Lemma 5.9], we have 𝜙𝜎(𝑆(𝐸)) < 𝜙𝜎(𝐸) + 2. When = 𝑢(𝑌2)

or 𝑢(𝑋10), recall that 𝑆2


≅ [4]. Then the same argument as in [51, Lemma 5.9] shows that
𝜙𝜎(𝑆(𝐸)) ⩽ 𝜙𝜎(𝐸) + 2. Then for any two objects 𝐴, 𝐵 ∈  with 𝜙+

𝜎 (𝐵) < 𝜙−
𝜎 (𝐴), using (1) and

(2), we see

𝜙−
𝜎 (𝐴[2]) = 𝜙−

𝜎 (𝐴) + 2 > 𝜙+
𝜎 (𝐵) + 2 ⩾ 𝜙+

𝜎 (𝑆(𝐵)).

Hence,Hom(𝐵,𝐴[2]) = Hom(𝐴[2], 𝑆(𝐵)) = 0 and the condition (C) is satisfied.
When  = 𝑢(𝑌3), from [51, Lemma 5.11], we get ext1(𝐸, 𝐸) ≠ 0, which implies 𝜙𝜎(𝐸) + 1 ⩽

𝜙𝜎(𝑆(𝐸)). This proves (1).
When  = 𝑢(𝑌2) or 𝑢(𝑋10), since  satisfies (A) and (C), by Lemma A.3, we have

ext1(𝐸, 𝐸) ≠ 0, which implies𝜙𝜎(𝐸) + 1 ⩽ 𝜙𝜎(𝑆(𝐸)). Now since [𝐸] = [𝑆(𝐸)] ∈  (), we have
𝜙𝜎(𝐸) − 𝜙𝜎(𝑆(𝐸)) ∈ 2ℤ. Hence, we get 𝜙𝜎(𝑆(𝐸)) = 𝜙𝜎(𝐸) + 2. □

Before verifying (D) and (E), we need several lemmas.

Lemma A.5. Let 𝑋 be a GM threefold.

(1) Hilb3𝑡+𝑚
𝑋 = ∅ for 𝑚 < 1. Thus, for any conic 𝐶 ⊂ 𝑋 and line 𝐿 ⊂ 𝑋, we have

Hom(𝐼𝐶,𝐿(−𝑘)) = 0 for any 𝑘 > 1.
(2) If a line 𝐿 and a conic 𝐶 satisfies 𝐿 ∩ 𝐶 ≠ ∅, then 𝐿 ∩ 𝐶 is of length one and 𝐿 ∪ 𝐶 is a twisted

cubic.
(3) Let  ⊂ Γ(𝑋) × (𝑋) be the incidence variety, that is,

 = {(𝐿, 𝐶) ∶ 𝐿 ∩ 𝐶 ≠ ∅}.

Then the projection maps  → (𝑋) and  → Γ(𝑋) are surjective.

Proof. By [53, Corollary 1.38], we haveHilb3𝑡+𝑚
𝑋 = ∅ for𝑚 < 0. Thus, to prove (1), we only need to

showHilb3𝑡
𝑋 = ∅. From [53, Corollary 1.38], ⟨𝐶⟩ ≅ ℙ2 for any [𝐶] ∈ Hilb3𝑡

𝑋 . Since 𝑋 is an intersec-
tion of quadrics, such a 𝐶 cannot exist on 𝑋. Hence, Hilb3𝑡

𝑋 = ∅. Now note that the kernel of any
nonzero map 𝐼𝐶 → 𝐿(−𝑘) is the ideal sheaf of a closed subscheme with the Hilbert polynomial
3𝑡 + 𝑚 for𝑚 ⩽ 2 − 𝑘. Therefore,Hom(𝐼𝐶,𝐿(−𝑘)) = 0 when 𝑘 > 1. This proves (1). For (2), note
that 𝜒(𝐿∪𝐶) = 2 − length(𝐿 ∩ 𝐶), then the result follows from (1).
Finally, we prove (3). Since dimΓ(𝑋) = 1, all lines on𝑋 sweep out a surface 𝑆 in𝑋. By Pic(𝑋) =

ℤ𝑋(𝐻), we see 𝑆 ∈ |𝑚𝐻| for 𝑚 > 0. Thus, 𝐶.𝑆 ⩾ 𝐶.𝐻 > 0 for any conic 𝐶. In other words, 𝐶 ∩

𝑆 ≠ ∅, hence any conic on 𝑋 intersects with a line. Thus,  → (𝑋) is surjective. Similarly, since
𝑋 is covered by conics, any line intersects with a conic. Then,  → Γ(𝑋) is surjective. □
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Lemma A.6. Let 𝑋 be a GM threefold. Then there exists a line 𝐿 and twisted cubics 𝐶 and 𝐷 on 𝑋

such that

(1) [𝐿] ∈ Γ(𝑋) is a smooth point,
(2) 𝐼𝐶 ∉ 𝑢(𝑋) and 𝐿 ∪ 𝐶 = 𝑍(𝑠) for a section 𝑠 ∈ 𝐻0(∨),
(3) 𝐿 ⊂ 𝐷, 𝐼𝐷 ∈ 𝑢(𝑋) and ext1(𝐼𝐷, 𝐼𝐷) = 3.

Proof. Let  ⊂ Γ(𝑋) × (𝑋) be the incidence variety. We denote by 1 the sublocus of (𝑋)

parametrizing smooth conics𝑍 such that their involutive conics are also smooth andhom( , 𝐼𝑍) =

1. By Remark 7.17, 1 is an open subscheme of (𝑋). Let 1 ∶= |Γ(𝑋)×1
. From [25, Theorem 3.4

(iii)] and [23, Section 3.1], Γ(𝑋) is generic smooth. This implies that the image of 𝑝∶ 1 → Γ(𝑋)

contains a smooth point.
Let 𝐿 ⊂ 𝑋 be a line such that [𝐿] ∈ Γ(𝑋) is smooth and contained in the image of 𝑝. Then

𝑝−1([𝐿]) is nonempty and there is a conic [𝑍] ∈ 1 such that 𝐿 ∩ 𝑍 ≠ ∅. We set 𝐷 ∶= 𝐿 ∪ 𝑍. And
sinceHom( , 𝐼𝐿) ≠ 0, there is a section 𝑠 ∈ 𝐻0() such that𝐿 ⊂ 𝑍(𝑠).Wedefine𝐶 to be the residue
curve of 𝐿 in 𝑍(𝑠). It is clear that 𝐶 and 𝐷 are twisted cubics by Lemma A.5. Moreover, 𝐿 and 𝑍

intersect transversely at a single point. Then, it remains to check 𝐼𝐶 ∉ 𝑢(𝑋), ext1(𝐼𝐷, 𝐼𝐷) = 3 and
𝐼𝐷 ∈ 𝑢(𝑋).
Since 𝐶 ⊂ 𝑍(𝑠), it is clear that Hom( , 𝐼𝐶) ≠ 0, that is, 𝐼𝐶 ∉ 𝑢(𝑋). Moreover, by the

construction, we have an exact sequence

0 → 𝐼𝐷 → 𝐼𝑍 → 𝐿(−1) → 0. (A.4)

Note that all conics are connected, hence the smoothness implies irreducibility. Since
Hom( , 𝐼𝑍) = 𝑘 and the involutive conic 𝑍′ is smooth, we know that 𝑍 ∪ 𝑍′ only has two irre-
ducible components that are both of degree 2, hence does not contain 𝐷. This means that
the unique nonzero map in Hom( , 𝐼𝑍) = 𝑘 does not factor through 𝐼𝐷 . Hence, the induced
mapHom( , 𝐼𝑍) → Hom( ,𝐿(−1)) is injective. By RHom∙( ,𝐿(−1)) = 𝑘, this map is actually
an isomorphism. Therefore, applying Hom( , −) to (A.4), we obtain RHom∙( , 𝐼𝐷) = 0, which
implies 𝐼𝐷 ∈ 𝑢(𝑋).
To show ext1(𝐼𝐷, 𝐼𝐷) = 3, since hom(𝐼𝐷, 𝐼𝐷) = 1 and ext3(𝐼𝐷, 𝐼𝐷) = 0, by 𝜒(𝐼𝐷, 𝐼𝐷) = −2, we

only need to prove ext2(𝐼𝐷, 𝐼𝐷) = 0. From the construction above, we see ext2(𝐼𝑍, 𝐼𝑍) = 0. More-
over, ext2(𝐿(−1),𝐿(−1)) = 0 since [𝐿] ∈ Γ(𝑋) is a smooth point. And by the transversality
of the intersection of 𝐿 and 𝑍, we see the derived restriction 𝑍|𝐿 ≅ 𝐿∩𝑍 ∈ D𝑏(𝐿). Hence,
ext2(𝑍,𝐿(−1)) = ext1(𝐼𝑍,𝐿(−1)) = 0. Finally, by Lemma A.5, we have hom(𝐼𝑍,𝐿(−2)) =

ext3(𝐿(−1), 𝐼𝑍) = 0. Then ext2(𝐼𝐷, 𝐼𝐷) = 0 follows from applying [52, Lemma 2.27] to (A.4). □

LemmaA.7. Let𝑋 be aGM threefold and 𝐿, 𝐶, 𝐷 as in LemmaA.6.We define𝐹1 ∶= pr′(𝐼𝐶), 𝐹′
1
∶=

𝐼𝐷 , and 𝐹2 ∶= pr′(𝐼𝐿). Then the objects 𝐹1, 𝐹
′
1
, 𝐹2 are stable with respect to any Serre-invariant

stability condition on𝑢(𝑋). Moreover, 𝐹1 and 𝐹′
1
have the same phase.

Proof. From the construction, we see ext1(𝐹′
1
, 𝐹′

1
) = 3. By the same argument as in [54, Corollary

5.4], we have ext1(𝐹1, 𝐹1) = 3. Finally, applying [52, Lemma 2.27] to ⊕2 → 𝐼𝐿 → 𝐹2 and using
RHom∙(𝐿,𝐿) = 𝑘 ⊕ 𝑘[−1] implies ext1(𝐹2, 𝐹2) = 3. Then, the stability of𝐹1, 𝐹

′
1
, and𝐹2 follows

from Proposition 4.12.
As [𝐹1] = [𝐹′

1
] ∈  (𝑢(𝑋)), we have 𝜒(𝐹1, 𝐹

′
1
) < 0. Since ext𝑖(𝐹1, 𝐹

′
1
) = ext𝑖(𝐼𝐶, 𝐼𝐷) = 0 for

𝑖 ∉ {1, 2}, we get Hom(𝐹1, 𝐹
′
1
[1]) = Hom(𝐹′

1
[1], 𝑆𝑢(𝑋)(𝐹1)) ≠ 0. Using Lemma A.4, we obtain
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48 of 52 JACOVSKIS et al.

𝜙𝜎(𝐹
′
1
) − 1 < 𝜙𝜎(𝐹1) < 𝜙𝜎(𝐹

′
1
) + 1 for any Serre-invariant stability condition 𝜎. Thus, 𝜙𝜎(𝐹1) =

𝜙𝜎(𝐹
′
1
) since [𝐹1] = [𝐹′

1
] ∈  (𝑢(𝑋)). □

Lemma A.8. Let  = 𝑢(𝑌𝑑) for 2 ⩽ 𝑑 ⩽ 3 or 𝑢(𝑋10). Then there exist two objects 𝐹1, 𝐹2 ∈ 

such that for any Serre-invariant stability condition 𝜎 on, 𝐹1 and 𝐹2 are 𝜎-stable with

𝜙𝜎(𝐹2) − 1 < 𝜙𝜎(𝐹1) < 𝜙𝜎(𝐹2).

In particular, the image of the central charge is not contained in a line for any Serre-invariant
stability condition on.

Proof. When = 𝑢(𝑌𝑑), we define𝐹2 ∶= 𝑅𝑜𝑚(𝐼𝐿,𝑌𝑑
(−𝐻))[1] and𝐹1 = 𝐼𝐿, where 𝐿 ⊂ 𝑌𝑑 is

a line. Thenby [51, Lemma5.13] and [51, Remark 4.8],𝐹1 and𝐹2 are𝜎-stable for any Serre-invariant
stability condition 𝜎 on with 𝜙𝜎(𝐹2) − 1 < 𝜙𝜎(𝐹1) < 𝜙𝜎(𝐹2).
Now assume that  = 𝑢(𝑋10). We take 𝐹1, 𝐹

′
1
, and 𝐹2 as in Lemma A.7. By [54, Proposition

3.3, 5.3], we have pr′(𝐼𝐶) ≅ pr′(𝐺), where 𝐺 fits into an exact triangle

𝑋(−𝐻)[1] → 𝐺 → 𝐿(−2)

and is the twisted derived dual of the line 𝐿.
First, we prove that Hom(𝐹2, 𝐹1[1]) ≠ 0. By adjunction, we have Hom(𝐹2, 𝐹1[1]) =

Hom(𝐼𝐿, pr
′(𝐺)[1]). And by [54, Proposition 5.3], pr′(𝐺) fits into an exact triangle

𝐺 → pr′(𝐺) →  . (A.5)

Since |𝐿 ≅ 𝐿 ⊕ 𝐿(−1), it is easy to see Ext𝑖(𝐼𝐿, ) for 𝑖 ≠ 2. So, applying Hom(𝐼𝐿, −) to (A.5),
we getHom(𝐼𝐿, pr

′(𝐺)[1]) = Hom(𝐼𝐿, 𝐺[1]) = Hom(𝐼𝐿,𝐿(−2)[1]). As the normal bundle𝑁𝐿∕𝑋10

is either 𝐿 ⊕ 𝐿(−1) or 𝐿(1) ⊕ 𝐿(−2) by [46, Lemma 4.2.1], we see the derived restriction
𝐼𝐿|𝐿 ≅ 𝑁∨

𝐿∕𝑋
⊕ 𝐿(1)[1] from [21, Proposition 11.8]. ThenHom(𝐼𝐿,𝐿(−2)[1]) ≠ 0 follows from a

direct computation.
Next, we show that Hom(𝐹′

1
, 𝐹2) ≠ 0. By the definition of pr′, pr′(𝐼𝐿) fits into an exact tri-

angle ⊕2 → 𝐼𝐿 → pr′(𝐼𝐿). Then applying Hom(𝐼𝐷, −) to this triangle, the result follows from
Hom(𝐼𝐷, ) = 0 and Hom(𝐼𝐷, 𝐼𝐿) ≠ 0 since 𝐿 ⊂ 𝐷.
By Lemma A.7, 𝐹1, 𝐹

′
1
, and 𝐹2 are all stable with respect to any Serre-invariant stability condi-

tion on. Therefore, combined with above results, we get 𝜙𝜎(𝐹1) = 𝜙𝜎(𝐹
′
1
) < 𝜙𝜎(𝐹2) < 𝜙𝜎(𝐹1) +

1 as desired. □

Now we are ready to verify conditions (D) and (E) in Theorem A.1.

LemmaA.9. Let = 𝑢(𝑌𝑑) for 2 ⩽ 𝑑 ⩽ 3 or𝑢(𝑋10). Then there exists a Serre-invariant stability
condition 𝜎1 on with two 𝜎1-stable objects 𝐷1, 𝐷2 satisfying (D) and (E). Moreover,

∙ we can assume that for any Serre-invariant stability condition 𝜎 on , 𝐷1 and 𝐷2 are 𝜎-stable
with

𝜙𝜎(𝐷1) − 1 < 𝜙𝜎(𝐷2) < 𝜙𝜎(𝐷1), or 𝜙𝜎(𝐷1) < 𝜙𝜎(𝐷2) < 𝜙𝜎(𝐷1) + 1,

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12878 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CATEGORICAL TORELLI FOR GM THREEFOLDS 49 of 52

∙ any Serre-invariant stability condition on  with the same central charge as 𝜎1 satisfies (D) and
(E).

Proof. When  = 𝑢(𝑌𝑑), we define 𝐷1 ∶= 𝑅𝑜𝑚(𝐼𝐿,𝑌𝑑
(−𝐻))[1] and 𝐷2 = 𝐼𝐿[1], where 𝐿 ⊂

𝑌𝑑 is a line. Then by [51, Lemma 5.13] and [51, Remark 4.8], 𝐷1 and 𝐷2 are 𝜎-stable for any Serre-
invariant stability condition 𝜎 on  with 𝜙𝜎(𝐷1) < 𝜙𝜎(𝐷2) < 𝜙𝜎(𝐷1) + 1. In this case, we take
𝜎1 ∶= 𝜎(𝛼,−1

2
) for 𝛼 > 0 sufficiently small. Then, by [51, Section 4], 𝐷1, 𝐷2 ∈ (𝛼, −1

2
). Now a

direct computation shows that, for any object 𝐸 with [𝐸] = 𝑎𝑣 + 𝑏𝑤, we have

∙ 𝜒(𝐸, 𝐷2) = 𝑎 + (𝑑 − 1)𝑏, 𝜒(𝐷2, 𝐸) = 𝑎 + 𝑏; and 𝜇0

𝛼,− 1
2

(𝐸) > 𝜇0

𝛼,− 1
2

(𝐷2) ⟺ 𝑏 < 0

∙ 𝜒(𝐸, 𝐷1) = −𝑏, 𝜒(𝐷1, 𝐸) = −[(𝑑 − 2)𝑎 + (𝑑 − 1)𝑏]; and 𝜇0

𝛼,− 1
2

(𝐸) > 𝜇0

𝛼,− 1
2

(𝐷1) ⟺ 𝑎 + 𝑏 < 0.

Then, it is straightforward to check (D) and (E) for 𝜎1.
When  = 𝑢(𝑋10), we use the equivalence Ξ in Lemma 3.7 and prove every thing on 𝑋10

.
Let 𝜎1 ∶= 𝜎(𝛼, 𝛽), where 𝛽 < 0 and 𝛼 > 0with−𝛽 and 𝛼 are sufficiently small. We set 𝐷1 = 𝐼𝐶[1]

and 𝐷2 = pr(𝐹)[1], where 𝐶 ⊂ 𝑋 is a smooth conic with 𝐼𝐶 ∈ 𝑋10
and 𝐹 ∈ 𝑀𝐺(2, 1, 5) is non-

locally free. It is clear that 𝐷1, 𝐷2 ∈ (𝛼, 𝛽) and are stable with respect to any Serre-invariant
stability condition on 𝑋10

by Lemma 7.5 and Proposition 8.7. As in the previous case, it is
straightforward to check (D) and (E) for 𝜎1. Now we show that for any Serre-invariant stability
condition 𝜎 on 𝑋10

, we have 𝜙𝜎(𝐷1) − 1 < 𝜙𝜎(𝐷2) < 𝜙𝜎(𝐷1). Indeed, if 𝜎 = 𝜎1, then this fol-
lows from a direct computation of the slope function of 𝜎1. When 𝜎 ≠ 𝜎1, by Lemma A.8, up
to G̃L

+
(2, ℝ)-action, we can assume that 𝜎 and 𝜎1 have the same central charge and 𝜙𝜎(𝐷1) =

𝜙𝜎1
(𝐷1). Thus, 𝜙𝜎(𝐷2) − 𝜙𝜎1

(𝐷2) ∈ 2ℤ. We claim that 𝜙𝜎(𝐷1) − 2 < 𝜙𝜎(𝐷2) < 𝜙𝜎(𝐷1), which
implies 𝜙𝜎(𝐷2) = 𝜙𝜎1

(𝐷2) and the result follows. Indeed, by Proposition 8.1, we have an exact
sequence 0 → 𝐹 →  → 𝐿(−1) → 0 for a line 𝐿 ⊂ 𝑋10. Hence, applyingHom(−,𝐷1) to this exact
sequence and useHom( , 𝐷1[−1]) ≠ 0 (Lemma 6.3) and adjunction of pr, we haveHom(𝐹, 𝐼𝐶) =

Hom(𝐷2, 𝐷1) = Hom(𝐷1, 𝑆𝑋10
(𝐷2)) ≠ 0. Then, by LemmaA.4,we obtain𝜙𝜎(𝐷1) − 2 < 𝜙𝜎(𝐷2) <

𝜙𝜎(𝐷1) as desired.
The final statement follows from the fact that (D) and (E) in this case only depend on the central

charge and numerical classes [𝐷1] and [𝐷2], as we have seen above. □

Applying Theorem A.1, we obtain the uniqueness of Serre-invariant stability conditions.

Theorem A.10. Let  = 𝑢(𝑌𝑑) for 2 ⩽ 𝑑 ⩽ 3 or 𝑢(𝑋10). Then all Serre-invariant stability
conditions on are in the same G̃L

+
(2, ℝ)-orbit.

Proof. Let 𝜎1,𝐷1 and𝐷2 as in LemmaA.9. Let 𝜎2 be another Serre-invariant stability condition on
. By Lemma A.8, up to G̃L

+
(2, ℝ)-action, we can assume that 𝜎1 and 𝜎2 have the same central

charge. Moreover, up to shift we can assume that 𝜙𝜎1
(𝐷1) = 𝜙𝜎2

(𝐷1). Thus, 𝜙𝜎1
(𝐷2) − 𝜙𝜎2

(𝐷2) ∈

2ℤ. And by Lemma A.9, 𝜎2 also satisfies (D) and (E).
Now from Lemma A.9, we have 𝜙𝜎𝑘

(𝐷1) − 1 < 𝜙𝜎𝑘
(𝐷2) < 𝜙𝜎𝑘

(𝐷1) or 𝜙𝜎𝑘
(𝐷1) < 𝜙𝜎𝑘

(𝐷2) <

𝜙𝜎𝑘
(𝐷1) + 1 for any 𝑘 ∈ {1, 2}. This implies 𝜙𝜎1

(𝐷2) = 𝜙𝜎2
(𝐷2). Therefore, by Lemmas A.4 and

A.9, we can apply Theorem A.1 and get 𝜎1 = 𝜎2. □

Remark A.11. The idea of the proof of Theorem A.10 was first explained to us by Arend Bayer.
In [54, Proposition 4.21], one of the authors made an attempt to prove this statement but the
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50 of 52 JACOVSKIS et al.

argument is incomplete. Here, we fill the gaps and give a more general argument. Later, in [17,
Theorem 3.1], the authors also prove the uniqueness of Serre-invariant stability conditions for
a general triangulated category satisfying a list of assumptions and include Kuznetsov compo-
nents of cubic threefolds and very general cubic fourfolds. The assumptions used in [17, Theorem
3.1] are (A) and (B), and the Serre functor of  satisfies 𝑆𝑟


= [𝑘] with 0 < 𝑘∕𝑟 < 2 or 𝑟 = 2 and

𝑘 = 4, while our Theorem A.1 also works for general triangulated categories that are not frac-
tional Calabi–Yau but with extra assumptions (C), (D), and (E). Indeed, if we take 𝐷1 = 𝐷 and
𝐷2 = 𝑆(𝐷)[−2] in (D) and (E) where𝐷 is an object in (B), then one can show that when 𝑘∕𝑟 < 2,
Theorem A.1 implies [17, Theorem 3.1]. Moreover, Theorem A.1 can be applied to the derived
category of a smooth projective curve or a generalized Kronecker quiver as well.
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